bootcamp_machine-learning
bootcamp_machine-learning copied to clipboard
Day 08 - ex06 : Loss function example error
- Day: 08 (ml_03)
- Exercise: 06 (Logistic Regression)
The examples provided for the loss function pass X and Y as parameters while the loss function should really be applied to Y and Y_hat
Examples Examples with loss corrected:
X = np.array([[1., 1., 2., 3.], [5., 8., 13., 21.], [3., 5., 9., 14.]])
Y = np.array([[1], [0], [1]])
mylr = MyLogisticRegression([2, 0.5, 7.1, -4.3, 2.09])
# Example 0:
Y_hat = mylr.predict_(X)
print(Y_hat)
# Output:
array([[0.99930437],
[1. ],
[1. ]])
# Example 1:
print(mylr.loss_(Y, Y_hat)) # HERE
# Output:
11.513157421577004
# Example 2:
mylr.fit_(X, Y)
print(mylr.thetas)
# Output:
# array([[ 1.04565272],
# [ 0.62555148],
# [ 0.38387466],
# [ 0.15622435],
# [-0.45990099]])
# Example 3:
Y_hat = mylr.predict_(X)
print(Y_hat)
# Output:
array([[0.72865802],
[0.40550072],
[0.45241588]])
# Example 4:
print(mylr.loss_(Y, Y_hat)) # HERE
# Output:
0.5432466580663214
Screenshots
Screenshot of current examples section
Fixed on:
- [ ] Github
- [ ] Gitlab
The issue is also present https://github.com/42-AI/bootcamp_machine-learning/blob/master/build/module08.pdf