HI!
Thank you very much for a wonderfull job you did! I've tried to run a reconstruction
python ./main.py --config superpoint+lightglue --images images --outs out --strategy sequential --overlap 2 --force
and everything is fine when I run it for a dataset with <1000 images. However, I run it for a dataset with 2000 images it takes significantly more time for BA, especially after 1000 images.
I tried to lower the quality here "quality": Quality.HIGH -> "quality": Quality.LOW but got
2024-01-04 16:08:21 | [INFO ] Matching features...
2024-01-04 16:08:21 | [INFO ]
3%|█▉ | 114/4545 [00:37<23:58, 3.08it/s]
Traceback (most recent call last):
File "C:\Users\yaroslav\Desktop\deep-image-matching\main.py", line 405, in
main()
File "C:\Users\yaroslav\Desktop\deep-image-matching\main.py", line 238, in main
match_path = img_matching.match_pairs(feature_path)
File "C:\Users\yaroslav\Desktop\deep-image-matching\src\deep_image_matching\image_matching.py", line 311, in match_pairs
matches = self._matcher.match(
File "C:\Users\yaroslav\Desktop\deep-image-matching\src\deep_image_matching\matchers\matcher_base.py", line 279, in match
self._matches = self._match_by_tile(
File "C:\Users\yaroslav\Desktop\deep-image-matching\src\deep_image_matching\matchers\matcher_base.py", line 380, in _match_by_tile
correspondences = self._match_pairs(feats0_tile, feats1_tile)
File "C:\Users\yaroslav\anaconda3\envs\slam\lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "C:\Users\yaroslav\Desktop\deep-image-matching\src\deep_image_matching\matchers\lightglue.py", line 71, in _match_pairs
match_res = self._matcher({"image0": feats0, "image1": feats1})
File "C:\Users\yaroslav\anaconda3\envs\slam\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\Users\yaroslav\anaconda3\envs\slam\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\yaroslav\Desktop\deep-image-matching\src\deep_image_matching\thirdparty\LightGlue\lightglue\lightglue.py", line 463, in forward
return self._forward(data)
File "C:\Users\yaroslav\Desktop\deep-image-matching\src\deep_image_matching\thirdparty\LightGlue\lightglue\lightglue.py", line 529, in _forward
if self.check_if_stop(token0[..., :m, :], token1[..., :n, :], i, m + n):
File "C:\Users\yaroslav\Desktop\deep-image-matching\src\deep_image_matching\thirdparty\LightGlue\lightglue\lightglue.py", line 613, in check_if_stop
confidences = torch.cat([confidences0, confidences1], -1)
RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 1 but got size 0 for tensor number 1 in the list.