Centernet-Tensorflow2.0
Centernet-Tensorflow2.0 copied to clipboard
video测试报错:core dumped
我用的时2080ti32g内存的电脑。
ctdet_image.py和hpdet_image.py的图片测试效果很棒,
但是 ctdet_video.py和hpdet_video.py进行video测试时报错:core dumped。
具体报错信息如下:
2019-12-13 18:04:28.776072: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2019-12-13 18:04:28.846456: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-12-13 18:04:28.846483: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-12-13 18:04:28.846489: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-12-13 18:04:28.846599: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1006] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-13 18:04:28.846897: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1006] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-13 18:04:28.847194: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1006] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-13 18:04:28.847485: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10154 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080 Ti, pci bus id: 0000:02:00.0, compute capability: 7.5)
2019-12-13 18:04:28.848626: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55a8eb599e80 executing computations on platform CUDA. Devices:
2019-12-13 18:04:28.848637: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): GeForce RTX 2080 Ti, Compute Capability 7.5
Segmentation fault (core dumped)