realtime-semantic-segmentation-pytorch icon indicating copy to clipboard operation
realtime-semantic-segmentation-pytorch copied to clipboard

PyTorch implementation of over 30 realtime semantic segmentations models, e.g. BiSeNetv1, BiSeNetv2, CGNet, ContextNet, DABNet, DDRNet, EDANet, ENet, ERFNet, ESPNet, ESPNetv2, FastSCNN, ICNet, LEDNet,...

Results 8 realtime-semantic-segmentation-pytorch issues
Sort by recently updated
recently updated
newest added

Have you used the pre-trained weights from the STDC official repository? If used, will mIoU be improved? Looking forward to your reply!

Why is the miou of each of my models 10% less than the table? I ran 200 rounds of training.

1. Include custom dataset. 2. Implement .gitignore file. 3. Integrate requirements.txt. 4. Ensure compatibility with Segformer backbone. 5. Provide export onnx support for DDRNet and STDC.

Thank you for the nice code and comparsion of the real-time segmentation methods, Is the STDCseg is the best method? In other words, if i have a new segmentation job...

![image](https://github.com/zh320/realtime-semantic-segmentation-pytorch/assets/107041399/3787fff2-3aec-4a00-80c0-528dddc8dfc7) detail seghead seems don't learn after a while and stay at same level

![image](https://github.com/zh320/realtime-semantic-segmentation-pytorch/assets/107041399/8b9d3be8-6d47-4c36-949d-91fbb19d9f33) ![aachen_000017_000019_leftImg8bit](https://github.com/zh320/realtime-semantic-segmentation-pytorch/assets/107041399/3e02b248-d5c0-45f0-a64e-299dac9f71ef) ![image](https://github.com/zh320/realtime-semantic-segmentation-pytorch/assets/107041399/bd05afb3-15ec-4fab-928b-d56efada2386)

https://github.com/zh320/realtime-semantic-segmentation-pytorch?tab=readme-ov-file#full-resolution-on-cityscapes 这张表中,看到了DDRNET的FPS数有明显异常 233FPS,别的模型参数量比它小很多的也没有它快。 我找了官方的测试结果图 ![image](https://github.com/user-attachments/assets/7dd0a480-b6f6-4f39-a218-dc48624b382f) 我们以BiSeNetv2作为参考,图中大概在150FPS,DDRnet的FPS在110左右。 而在你的表格中 BiSeNetv2 的FPS比较接近,而ddrnet的fps为233。我心生疑虑,还请勘误。