JS_Fun_Practice
JS_Fun_Practice copied to clipboard
A list of small & fun functional programming exercises in JavaScript
js-function-fun
A list of small & fun functional programming exercises in JavaScript.
Contributing
Please see CONTRIBUTING.
Testing
To test the functions:
-
Run
npm installto install the dependencies (need node.js for npm). -
Change
filenameintest/tests.jsto the name of your solution file. -
Make sure your solution file is in the
Solutionsfolder. -
Make sure your function names match the ones listed below as you're coding them.
-
At the bottom of your solution file, add
module.exports = { identity, addb, subb, mulb, minb, maxb, add, sub, mul, min, max, addRecurse, mulRecurse, minRecurse, maxRecurse, not, acc, accPartial, accRecurse, fill, fillRecurse, set, identityf, addf, liftf, pure, curryb, curry, inc, twiceUnary, doubl, square, twice, reverseb, reverse, composeuTwo, composeu, composeb, composeTwo, compose, limitb, limit, genFrom, genTo, genFromTo, elementGen, element, collect, filter, filterTail, concatTwo, concat, concatTail, gensymf, gensymff, fibonaccif, counter, revocableb, revocable, extract, m, addmTwo, addm, liftmbM, liftmb, liftm, exp, expn, addg, liftg, arrayg, continuizeu, continuize, vector, exploitVector, vectorSafe, pubsub, mapRecurse, filterRecurse, }; -
You can comment out any function names in the
module.exportsthat you haven't written yet, but a lot of the tests depend on previous functions to run properly so it's safer to write the functions in order. -
Finally,
npm run testto run the tests.
Functions
- identity(x) ⇒
any Write a function
identitythat takes an argument and returns that argument- addb(a, b) ⇒
number Write a binary function
addbthat takes two numbers and returns their sum- subb(a, b) ⇒
number Write a binary function
subbthat takes two numbers and returns their difference- mulb(a, b) ⇒
number Write a binary function
mulbthat takes two numbers and returns their product- minb(a, b) ⇒
number Write a binary function
minbthat takes two numbers and returns the smaller one- maxb(a, b) ⇒
number Write a binary function
maxbthat takes two numbers and returns the larger one- add(...nums) ⇒
number Write a function
addthat is generalized for any amount of arguments- sub(...nums) ⇒
number Write a function
subthat is generalized for any amount of arguments- mul(...nums) ⇒
number Write a function
multhat is generalized for any amount of arguments- min(...nums) ⇒
number Write a function
minthat is generalized for any amount of arguments- max(...nums) ⇒
number Write a function
maxthat is generalized for any amount of arguments- addRecurse(...nums) ⇒
number Write a function
addRecursethat is the generalizedaddfunction but uses recursion- mulRecurse(...nums) ⇒
number Write a function
mulRecursethat is the generalizedmulfunction but uses recursion- minRecurse(...nums) ⇒
number Write a function
minRecursethat is the generalizedminfunction but uses recursion- maxRecurse(...nums) ⇒
number Write a function
maxRecursethat is the generalizedmaxfunction but uses recursion- not(func) ⇒
function Write a function
notthat takes a function and returns the negation of its result- acc(func, initial) ⇒
function Write a function
accthat takes a function and an initial value and returns a function that runs the initial function on each argument, accumulating the result- accPartial(func, start, end) ⇒
function Write a function
accPartialthat takes in a function, a start index, and an end index, and returns a function that accumulates a subset of its arguments by applying the given function to all elements between start and end.- accRecurse(func, initial) ⇒
function Write a function
accRecursethat does whataccdoes but uses recursion- fill(num) ⇒
array Write a function
fillthat takes a number and returns an array with that many numbers equal to the given number- fillRecurse(num) ⇒
array Write a function
fillRecursethat does whatfilldoes but uses recursion- set(...args) ⇒
array Write a function
setthat is given a list of arguments and returns an array with all duplicates removed- identityf(x) ⇒
function Write a function
identityfthat takes an argument and returns a function that returns that argument- addf(a) ⇒
function Write a function
addfthat adds from two invocations- liftf(binary) ⇒
function Write a function
liftfthat takes a binary function, and makes it callable with two invocations- pure(x, y) ⇒
array Write a pure function
purethat is a wrapper arround the impure functionimpurefunction impure(x) { y++; z = x * y; }var y = 5, z;
impure(20); z; // 120
impure(25); z; // 175
- curryb(binary, a) ⇒
function Write a function
currybthat takes a binary function and an argument, and returns a function that can take a second argument- curry(func, ...outer) ⇒
function Write a function
currythat is generalized for any amount of arguments- inc(x) ⇒
number Without writting any new functions, show multiple ways to create the
incfunction- twiceUnary(binary) ⇒
function Write a function
twiceUnarythat takes a binary function and returns a unary function that passes its argument to the binary function twice- doubl(x) ⇒
number Use the function
twiceUnaryto create thedoublfunction- square(x) ⇒
number Use the function
twiceUnaryto create thesquarefunction- twice(x) ⇒
any Write a function
twicethat is generalized for any amount of arguments- reverseb(binary) ⇒
function Write a function
reversebthat reverses the arguments of a binary function- reverse(func) ⇒
function Write a function
reversethat is generalized for any amount of arguments- composeuTwo(unary1, unary2) ⇒
function Write a function
composeuTwothat takes two unary functions and returns a unary function that calls them both- composeu(...funcs) ⇒
any Write a function
composeuthat is generalized for any amount of arguments- composeb(binary1, binary2) ⇒
function Write a function
composebthat takes two binary functions and returns a function that calls them both- composeTwo(func1, func2) ⇒
function Write a function
composeTwothat takes two functions and returns a function that calls them both- compose(...funcs) ⇒
function Write a function
composethat takes any amount of functions and returns a function that takes any amount of arguments and gives them to the first function, then that result to the second function and so on- limitb(binary, lmt) ⇒
function Write a function
limitbthat allows a binary function to be called a limited number of times- limit(func, lmt) ⇒
function Write a function
limitthat is generalized for any amount of arguments- genFrom(x) ⇒
function Write a function
genFromthat produces a generator that will produces a series of values- genTo(gen, lmt) ⇒
function Write a function
genTothat takes a generator and an end limit, and returns a generator that will produce numbers up to that limit- genFromTo(start, end) ⇒
function Write a function
genFromTothat produces a generator that will produce values in a range- elementGen(array, gen) ⇒
function Write a function
elementGenthat takes an array and a generator and returns a generator that will produce elements from the array- element(array, gen) ⇒
function Write a function
elementthat is a modifiedelementGenfunction so that the generator argument is optional. If a generator is not provided, then each of the elements of the array will be produced.- collect(gen, array) ⇒
function Write a function
collectthat takes a generator and an array and produces a function that will collect the results in the array- filter(gen, predicate) ⇒
function Write a function
filterthat takes a generator and a predicate and produces a generator that produces only the values approved by the predicate- filterTail(gen, predicate) ⇒
function Write a function
filterTailthat uses tail-recursion to perform the filtering- concatTwo(gen1, gen2) ⇒
function Write a function
concatTwothat takes two generators and produces a generator that combines the sequences- concat(...gens) ⇒
function Write a function
concatthat is generalized for any amount of arguments- concatTail(...gens) ⇒
function Write a function
concatTailthat uses tail-recursion to perform the concating- gensymf(symbol) ⇒
function Write a function
gensymfthat makes a function that generates unique symbols- gensymff(unary, seed) ⇒
function Write a function
gensymffthat takes a unary function and a seed and returns agensymf- fibonaccif(first, second) ⇒
function Write a function
fibonaccifthat returns a generator that will return the next fibonacci number- counter(i) ⇒
object Write a function
counterthat returns an object containing two functions that implement an up/down counter, hiding the counter- revocableb(binary) ⇒
object Write a function
revocablebthat takes a binary function, and returns an object containing aninvokefunction that can invoke a function and arevokefunction that disables theinvokefunction- revocable(func) ⇒
object Write a function
revocablethat is generalized for any amount of arguments- extract(array, prop) ⇒
array Write a function
extractthat takes an array of objects and an object property name and converts each object in the array by extracting that property- m(value, source) ⇒
object Write a function
mthat takes a value and an optional source string and returns them in an object- addmTwo(m1, m2) ⇒
object Write a function
addmTwothat adds twomobjects and returns anmobject- addm(...ms) ⇒
object Write a function
addmthat is generalized for any amount of arguments- liftmbM(binary, op) ⇒
object Write a function
liftmbMthat takes a binary function and a string and returns a function that acts onmobjects- liftmb(binary, op) ⇒
object Write a function
liftmbthat is a modified functionliftmbMthat can accept arguments that are either numbers or m objects- liftm(func, op) ⇒
object Write a function
liftmthat is generalized for any amount of arguments- exp(value) ⇒
any Write a function
expthat evaluates simple array expressions- expn(value) ⇒
any Write a function
expnthat is a modifiedexpthat can evaluate nested array expressions- addg(value) ⇒
number|undefined Write a function
addgthat adds from many invocations, until it sees an empty invocation- liftg(binary) ⇒
function Write a function
liftgthat will take a binary function and apply it to many invocations- arrayg(value) ⇒
array Write a function
arraygthat will build an array from many invocations- continuizeu(unary) ⇒
function Write a function
continuizeuthat takes a unary function and returns a function that takes a callback and an argument- continuize(any) ⇒
function Write a function
continuizethat takes a function and returns a function that takes a callback and an argument- vector()
Make an array wrapper object with methods
get,store, andappend, such that an attacker cannot get access to the private array- exploitVector()
Let's assume your
vectorimplementation looks like something like this:vector = () => { let array = []; return { append: (v) => array.push(v), get: (i) => array[i], store: (i, v) => array[i] = v }; }Can you spot any security concerns with this approach? Mainly, can we get access to the
arrayoutside ofvector? Note: the issue has nothing to do with prototypes and we can assume that global prototypes cannot be altered. Hint: Think about usingthisin a method invocation. Can we override a method ofvector?- vectorSafe()
How would you rewrite
vectorto deal with the issue from above?- pubsub()
Make a function
pubsubthat makes a publish/subscribe object. It will reliably deliver all publications to all subscribers in the right order.- mapRecurse(array, predicate) ⇒
array Make a function
mapRecursethat performs a transformation for each element of a given array, recursively- filterRecurse(array, predicate) ⇒
array Make a function
filterRecursethat takes in an array and a predicate function and returns a new array by filtering out all items using the predicate, recursively.
identity(x) ⇒ any
Write a function identity that
takes an argument and returns
that argument
| Param | Type |
|---|---|
| x | any |
Example
identity(3) // 3
addb(a, b) ⇒ number
Write a binary function addb
that takes two numbers and returns
their sum
| Param | Type |
|---|---|
| a | number |
| b | number |
Example
addb(3, 4) // 3 + 4 = 7
subb(a, b) ⇒ number
Write a binary function subb
that takes two numbers and returns
their difference
| Param | Type |
|---|---|
| a | number |
| b | number |
Example
subb(3, 4) // 3 - 4 = -1
mulb(a, b) ⇒ number
Write a binary function mulb
that takes two numbers and returns
their product
| Param | Type |
|---|---|
| a | number |
| b | number |
Example
mulb(3, 4) // 3 * 4 = 12
minb(a, b) ⇒ number
Write a binary function minb
that takes two numbers and returns
the smaller one
| Param | Type |
|---|---|
| a | number |
| b | number |
Example
minb(3, 4) // 3
maxb(a, b) ⇒ number
Write a binary function maxb
that takes two numbers and returns
the larger one
| Param | Type |
|---|---|
| a | number |
| b | number |
Example
maxb(3, 4) // 4
add(...nums) ⇒ number
Write a function add that
is generalized for any
amount of arguments
| Param | Type |
|---|---|
| ...nums | number |
Example
add(1, 2, 4) // 1 + 2 + 4 = 7
sub(...nums) ⇒ number
Write a function sub that
is generalized for any
amount of arguments
| Param | Type |
|---|---|
| ...nums | number |
Example
sub(1, 2, 4) // 1 - 2 - 4 = -5
mul(...nums) ⇒ number
Write a function mul that
is generalized for any
amount of arguments
| Param | Type |
|---|---|
| ...nums | number |
Example
mul(1, 2, 4) // 1 * 2 * 4 = 8
min(...nums) ⇒ number
Write a function min that
is generalized for any
amount of arguments
| Param | Type |
|---|---|
| ...nums | number |
Example
min(1, 2, 4) // 1
max(...nums) ⇒ number
Write a function max that
is generalized for any
amount of arguments
| Param | Type |
|---|---|
| ...nums | number |
Example
max(1, 2, 4) // 4
addRecurse(...nums) ⇒ number
Write a function addRecurse that
is the generalized add function
but uses recursion
| Param | Type |
|---|---|
| ...nums | number |
Example
addRecurse(1, 2, 4) // 1 + 2 + 4 = 7
mulRecurse(...nums) ⇒ number
Write a function mulRecurse that
is the generalized mul function
but uses recursion
| Param | Type |
|---|---|
| ...nums | number |
Example
mulRecurse(1, 2, 4) // 1 * 2 * 4 = 8
minRecurse(...nums) ⇒ number
Write a function minRecurse that
is the generalized min function
but uses recursion
| Param | Type |
|---|---|
| ...nums | number |
Example
minRecurse(1, 2, 4) // 1
maxRecurse(...nums) ⇒ number
Write a function maxRecurse that
is the generalized max function
but uses recursion
| Param | Type |
|---|---|
| ...nums | number |
Example
maxRecurse(1, 2, 4) // 4
not(func) ⇒ function
Write a function not that
takes a function and returns
the negation of its result
| Param | Type |
|---|---|
| func | function |
Example
const isOdd = (x) => x % 2 === 1
const isEven = not(isOdd)
isEven(1) // false
isEven(2) // true
acc(func, initial) ⇒ function
Write a function acc that
takes a function and an
initial value and returns
a function that runs the
initial function on each
argument, accumulating the
result
| Param | Type |
|---|---|
| func | function |
| initial | any |
Example
let add = acc(addb, 0)
add(1, 2, 4) // 7
let mul = acc(mulb, 1)
mul(1, 2, 4) // 8
accPartial(func, start, end) ⇒ function
Write a function accPartial that
takes in a function, a start index,
and an end index, and returns a
function that accumulates a subset
of its arguments by applying the
given function to all elements
between start and end.
| Param | Type |
|---|---|
| func | function |
| start | number |
| end | number |
Example
const addSecondToThird = accPartial(add, 1, 3)
addSecondToThird(1, 2, 4, 8) // [ 1, 6, 8 ]
accRecurse(func, initial) ⇒ function
Write a function accRecurse that
does what acc does but uses recursion
| Param | Type |
|---|---|
| func | function |
| initial | number |
Example
let add = accRecurse(addb, 0)
add(1, 2, 4) // 7
let mul = accRecurse(mulb, 1)
mul(1, 2, 4) // 8
fill(num) ⇒ array
Write a function fill that
takes a number and returns
an array with that many
numbers equal to the given
number
| Param | Type |
|---|---|
| num | number |
Example
fill(3) // [ 3, 3, 3 ]
fillRecurse(num) ⇒ array
Write a function fillRecurse that
does what fill does but uses recursion
| Param | Type |
|---|---|
| num | number |
Example
fillRecurse(3) // [ 3, 3, 3 ]
set(...args) ⇒ array
Write a function set that
is given a list of arguments
and returns an array with
all duplicates removed
| Param | Type |
|---|---|
| ...args | any |
Example
let oneAndTwo = set(1, 1, 1, 2, 2, 2) // [ 1, 2 ]
identityf(x) ⇒ function
Write a function identityf
that takes an argument and
returns a function that
returns that argument
| Param | Type |
|---|---|
| x | any |
Example
let three = identityf(3)
three() // 3
addf(a) ⇒ function
Write a function addf that
adds from two invocations
| Param | Type |
|---|---|
| a | number |
Example
addf(3)(4) // 7
liftf(binary) ⇒ function
Write a function liftf that
takes a binary function, and
makes it callable with two
invocations
| Param | Type |
|---|---|
| binary | function |
Example
let addf = liftf(addb)
addf(3)(4) // 7
liftf(mulb)(5)(6) // 30
pure(x, y) ⇒ array
Write a pure function pure that
is a wrapper arround the impure
function impure
function impure(x) {
y++;
z = x * y;
}
var y = 5, z;
impure(20);
z; // 120
impure(25);
z; // 175
Returns: array - an array containing y and z
| Param | Type |
|---|---|
| x | number |
| y | number |
Example
pure(20, 5) // [ 6, 120 ]
pure(25, 6) // [ 7, 175 ]
curryb(binary, a) ⇒ function
Write a function curryb that
takes a binary function and
an argument, and returns a
function that can take a
second argument
| Param | Type |
|---|---|
| binary | function |
| a | any |
Example
let add3 = curryb(addb, 3)
add3(4) // 7
curryb(mulb, 5)(6) // 30
curry(func, ...outer) ⇒ function
Write a function curry that
is generalized for any amount
of arguments
| Param | Type |
|---|---|
| func | function |
| ...outer | any |
Example
curry(add, 1, 2, 4)(4, 2, 1) = 1 + 2 + 4 + 4 + 2 + 1 = 14
curry(sub, 1, 2, 4)(4, 2, 1) = 1 - 2 - 4 - 4 - 2 - 1 = -12
curry(mul, 1, 2, 4)(4, 2, 1) = 1 * 2 * 4 * 4 * 2 * 1 = 64
inc(x) ⇒ number
Without writting any new functions,
show multiple ways to create the inc
function
| Param | Type |
|---|---|
| x | number |
Example
inc(5) // 6
inc(inc(5)) // 7
twiceUnary(binary) ⇒ function
Write a function twiceUnary
that takes a binary function
and returns a unary function
that passes its argument to
the binary function twice
| Param | Type |
|---|---|
| binary | function |
Example
let doubl = twiceUnary(addb)
doubl(11) // 22
let square = twiceUnary(mulb)
square(11) // 121
doubl(x) ⇒ number
Use the function twiceUnary to
create the doubl function
| Param | Type |
|---|---|
| x | number |
Example
doubl(11) // 22
square(x) ⇒ number
Use the function twiceUnary to
create the square function
| Param | Type |
|---|---|
| x | number |
Example
square(11) // 121
twice(x) ⇒ any
Write a function twice that
is generalized for any amount
of arguments
| Param | Type |
|---|---|
| x | function |
Example
let doubleSum = twice(add)
doubleSum(1, 2, 4) // 1 + 2 + 4 + 1 + 2 + 4 = 14
reverseb(binary) ⇒ function
Write a function reverseb that
reverses the arguments of a
binary function
| Param | Type |
|---|---|
| binary | function |
Example
let bus = reverseb(subb)
bus(3, 2) // -1
reverse(func) ⇒ function
Write a function reverse that
is generalized for any amount
of arguments
| Param | Type |
|---|---|
| func | function |
Example
reverse(sub)(1, 2, 4) // 4 - 2 - 1 = 1
composeuTwo(unary1, unary2) ⇒ function
Write a function composeuTwo that
takes two unary functions and
returns a unary function that
calls them both
| Param | Type |
|---|---|
| unary1 | function |
| unary2 | function |
Example
composeuTwo(doubl, square)(5) // 100
composeu(...funcs) ⇒ any
Write a function composeu that
is generalized for any amount
of arguments
| Param | Type |
|---|---|
| ...funcs | function |
Example
composeu(doubl, square, identity, curry(add, 1, 2))(5) // (5 + 5) * (5 + 5) + 1 + 2 = 103
composeb(binary1, binary2) ⇒ function
Write a function composeb that
takes two binary functions and
returns a function that calls
them both
| Param | Type |
|---|---|
| binary1 | function |
| binary2 | function |
Example
composeb(addb, mulb)(2, 3, 7) // 35
composeTwo(func1, func2) ⇒ function
Write a function composeTwo that
takes two functions and returns a
function that calls them both
| Param | Type |
|---|---|
| func1 | function |
| func2 | function |
Example
composeTwo(add, square)(2, 3, 7) // (2 + 3 + 7)^2 = 144
compose(...funcs) ⇒ function
Write a function compose that
takes any amount of functions
and returns a function that takes
any amount of arguments and gives
them to the first function, then
that result to the second function
and so on
| Param | Type |
|---|---|
| ...funcs | function |
Example
const f = compose(add, doubl, fill, max)
f(0, 1, 2)
// add(0, 1, 2) -> 3
// doubl(3) -> 6
// fill(6) -> [ 6, 6, 6, 6, 6, 6 ]
// max([ 6, 6, 6, 6, 6, 6 ]) -> 6
limitb(binary, lmt) ⇒ function
Write a function limitb
that allows a binary function
to be called a limited number
of times
| Param | Type |
|---|---|
| binary | function |
| lmt | number |
Example
let addLmtb = limitb(addb, 1)
addLmtb(3, 4) // 7
addLmtb(3, 5) // undefined
limit(func, lmt) ⇒ function
Write a function limit that
is generalized for any amount
of arguments
| Param | Type |
|---|---|
| func | function |
| lmt | number |
Example
let addLmt = limit(add, 1)
addLmt(1, 2, 4) // 7
addLmt(3, 5, 9, 2) // undefined
genFrom(x) ⇒ function
Write a function genFrom that
produces a generator that will
produces a series of values
| Param | Type |
|---|---|
| x | number |
Example
let index = genFrom(0)
index.next().value // 0
index.next().value // 1
index.next().value // 2
genTo(gen, lmt) ⇒ function
Write a function genTo that
takes a generator and an end
limit, and returns a generator
that will produce numbers up
to that limit
| Param | Type |
|---|---|
| gen | function |
| lmt | number |
Example
let index = genTo(genFrom(1), 3)
index() // 1
index() // 2
index() // undefined
genFromTo(start, end) ⇒ function
Write a function genFromTo that
produces a generator that will
produce values in a range
| Param | Type |
|---|---|
| start | number |
| end | number |
Example
let index = genFromTo(0, 3)
index() // 0
index() // 1
index() // 2
index() // undefined
elementGen(array, gen) ⇒ function
Write a function elementGen that
takes an array and a generator
and returns a generator that will
produce elements from the array
| Param | Type |
|---|---|
| array | array |
| gen | function |
Example
let ele = elementGen(['a', 'b', 'c', 'd'], genFromTo(1, 3))
ele() // 'b'
ele() // 'c'
ele() // undefined
element(array, gen) ⇒ function
Write a function element that is a
modified elementGen function so that
the generator argument is optional.
If a generator is not provided, then
each of the elements of the array
will be produced.
| Param | Type |
|---|---|
| array | array |
| gen | function |
Example
let ele = element(['a', 'b', 'c', 'd'])
ele() // 'a'
ele() // 'b'
ele() // 'c'
ele() // 'd'
ele() // undefined
collect(gen, array) ⇒ function
Write a function collect that takes a
generator and an array and produces
a function that will collect the results
in the array
| Param | Type |
|---|---|
| gen | function |
| array | array |
Example
let array = []
let col = collect(genFromTo(0, 2), array)
col() // 0
col() // 1
col() // undefined
array // [0, 1]
filter(gen, predicate) ⇒ function
Write a function filter that takes a
generator and a predicate and produces
a generator that produces only the
values approved by the predicate
| Param | Type |
|---|---|
| gen | function |
| predicate | function |
Example
let fil = filter(genFromTo(0, 5), (val) => val % 3 === 0)
fil() // 0
fil() // 3
fil() // undefined
filterTail(gen, predicate) ⇒ function
Write a function filterTail that uses
tail-recursion to perform the filtering
| Param | Type |
|---|---|
| gen | function |
| predicate | function |
Example
let third = (val) => val % 3 === 0
let fil = filterTail(genFromTo(0, 5), third)
fil() // 0
fil() // 3
fil() // undefined
concatTwo(gen1, gen2) ⇒ function
Write a function concatTwo that takes
two generators and produces a generator
that combines the sequences
| Param | Type |
|---|---|
| gen1 | function |
| gen2 | function |
Example
let con = concatTwo(genFromTo(0, 3), genFromTo(0, 2))
con() // 0
con() // 1
con() // 2
con() // 0
con() // 1
con() // undefined
concat(...gens) ⇒ function
Write a function concat that
is generalized for any amount
of arguments
| Param | Type |
|---|---|
| ...gens | function |
Example
let con = concat(genFromTo(0, 3), genFromTo(0, 2), genFromTo(5, 7))
con() // 0
con() // 1
con() // 2
con() // 0
con() // 1
col() // 5
col() // 6
con() // undefined
concatTail(...gens) ⇒ function
Write a function concatTail that uses
tail-recursion to perform the concating
| Param | Type |
|---|---|
| ...gens | function |
Example
let con = concatTail(genFromTo(0, 3), genFromTo(0, 2), genFromTo(5, 7))
con() // 0
con() // 1
con() // 2
con() // 0
con() // 1
col() // 5
col() // 6
con() // undefined
gensymf(symbol) ⇒ function
Write a function gensymf that
makes a function that generates
unique symbols
| Param | Type |
|---|---|
| symbol | string |
Example
let genG = gensymf('G')
let genH = gensymf('H')
genG() // 'G1'
genH() // 'H1'
genG() // 'G2'
genH() // 'H2'
gensymff(unary, seed) ⇒ function
Write a function gensymff that
takes a unary function and a
seed and returns a gensymf
| Param | Type |
|---|---|
| unary | function |
| seed | number |
Example
let gensymf = gensymff(inc, 0)
let genG = gensymf('G')
let genH = gensymf('H')
genG() // 'G1'
genH() // 'H1'
genG() // 'G2'
genH() // 'H2'
fibonaccif(first, second) ⇒ function
Write a function fibonaccif that
returns a generator that will
return the next fibonacci number
| Param | Type |
|---|---|
| first | number |
| second | number |
Example
let fib = fibonaccif(0, 1)
fib() // 0
fib() // 1
fib() // 1
fib() // 2
fib() // 3
fib() // 5
fib() // 8
counter(i) ⇒ object
Write a function counter that
returns an object containing
two functions that implement
an up/down counter, hiding
the counter
| Param | Type |
|---|---|
| i | number |
Example
let obj = counter(10)
let { up, down } = obj
up() // 11
down() // 10
down() // 9
up() // 10
revocableb(binary) ⇒ object
Write a function revocableb
that takes a binary function, and
returns an object containing an
invoke function that can invoke a
function and a revoke function
that disables the invoke function
| Param | Type |
|---|---|
| binary | function |
Example
let rev = revocableb(addb)
rev.invoke(3, 4) // 7
rev.revoke()
rev.invoke(5, 7) // undefined
revocable(func) ⇒ object
Write a function revocable that
is generalized for any amount of
arguments
| Param | Type |
|---|---|
| func | function |
Example
let rev = revocable(add)
rev.invoke(3, 4) // 7
rev.revoke()
rev.invoke(5, 7) // undefined
extract(array, prop) ⇒ array
Write a function extract that
takes an array of objects and an
object property name and converts
each object in the array by
extracting that property
| Param | Type |
|---|---|
| array | array |
| prop | string |
Example
let people = [{ name: 'john' }, { name: 'bob' }]
let names = extract(people, 'name') // ['john', 'bob']
m(value, source) ⇒ object
Write a function m that
takes a value and an
optional source string
and returns them in an
object
| Param | Type |
|---|---|
| value | any |
| source | any |
Example
JSON.stringify(m(1)) // '{"value":1,"source":"1"}'
JSON.stringify(m(Math.PI, 'pi')) // '{"value":3.14159...,"source":"pi"}'
addmTwo(m1, m2) ⇒ object
Write a function addmTwo that
adds two m objects and
returns an m object
| Param | Type |
|---|---|
| m1 | function |
| m2 | function |
Example
JSON.stringify(addmTwo(m(3), m(4))) // '{"value":7,"source":"(3+4)"}'
JSON.stringify(addmTwo(m(1), m(Math.PI, 'pi'))) // '{"value":4.14159...,"source":"(1+pi)"}'
addm(...ms) ⇒ object
Write a function addm that
is generalized for any amount of
arguments
| Param | Type |
|---|---|
| ...ms | function |
Example
JSON.stringify(addm(m(1), m(2), m(4))) // '{"value":7,"source":"(1+2+4)"}'
liftmbM(binary, op) ⇒ object
Write a function liftmbM that
takes a binary function and
a string and returns a function
that acts on m objects
| Param | Type |
|---|---|
| binary | function |
| op | string |
Example
let addmb = liftmbM(addb, '+')
JSON.stringify(addmb(m(3), m(4))) // '{"value":7,"source":"(3+4)"}'
JSON.stringify(liftmbM(mul, '*')(m(3), m(4))) // '{"value":12,"source":"(3*4)"}'
liftmb(binary, op) ⇒ object
Write a function liftmb that
is a modified function liftmbM
that can accept arguments that
are either numbers or m objects
| Param | Type |
|---|---|
| binary | function |
| op | string |
Example
let addmb = liftmb(addb, '+')
JSON.stringify(addmb(3, 4)) // '{"value":7,"source":"(3+4)"}'
liftm(func, op) ⇒ object
Write a function liftm that
is generalized for any amount of
arguments
| Param | Type |
|---|---|
| func | function |
| op | string |
Example
let addm = liftm(add, '+')
JSON.stringify(addm(m(3), m(4))) // '{"value":7,"source":"(3+4)"}'
JSON.stringify(liftm(mul, '*')(m(3), m(4))) // '{"value":12,"source":"(3*4)"}'
exp(value) ⇒ any
Write a function exp that
evaluates simple array
expressions
| Param | Type |
|---|---|
| value | any |
Example
let sae = [mul, 1, 2, 4]
exp(sae) // 1 * 2 * 4 = 8
exp(42) // 42
expn(value) ⇒ any
Write a function expn
that is a modified exp that
can evaluate nested array
expressions
| Param | Type |
|---|---|
| value | any |
Example
let nae = [Math.sqrt, [add, [square, 3], [square, 4]]]
expn(nae) // sqrt(((3*3)+(4*4))) === 5
addg(value) ⇒ number | undefined
Write a function addg that
adds from many invocations,
until it sees an empty
invocation
| Param | Type |
|---|---|
| value | number |
Example
addg() // undefined
addg(2)() // 2
addg(2)(7)() // 9
addg(3)(0)(4)() // 7
addg(1)(2)(4)(8)() // 15
liftg(binary) ⇒ function
Write a function liftg that
will take a binary function
and apply it to many invocations
| Param | Type |
|---|---|
| binary | function |
Example
liftg(mulb)() // undefined
liftg(mulb)(3)() // 3
liftg(mulb)(3)(0)(4)() // 0
liftg(mulb)(1)(2)(4)(8)() // 64
arrayg(value) ⇒ array
Write a function arrayg that
will build an array from many
invocations
| Param | Type |
|---|---|
| value | any |
Example
arrayg() // []
arrayg(3)() // [3]
arrayg(3)(4)(5)() // [3, 4, 5]
continuizeu(unary) ⇒ function
Write a function continuizeu
that takes a unary function
and returns a function that
takes a callback and an
argument
| Param | Type |
|---|---|
| unary | function |
Example
sqrtc = continuizeu(Math.sqrt)
sqrtc(console.log, 81) // logs '9'
continuize(any) ⇒ function
Write a function continuize
that takes a function and
returns a function that
takes a callback and an
argument
| Param | Type |
|---|---|
| any | function |
Example
mullc = continuize(Math.mul)
mulc(console.log, 81, 4, 2) // logs '648'
vector()
Make an array wrapper object
with methods get, store,
and append, such that an
attacker cannot get access
to the private array
Example
let v = vector()
v.append(7)
v.store(1, 8)
v.get(0) // 7
v.get(1) // 8
exploitVector()
Let's assume your vector
implementation looks like
something like this:
vector = () => {
let array = [];
return {
append: (v) => array.push(v),
get: (i) => array[i],
store: (i, v) => array[i] = v
};
}
Can you spot any security concerns with
this approach? Mainly, can we get access
to the array outside of vector?
Note*: the issue has nothing to do with
prototypes and we can assume that global
prototypes cannot be altered.
Hint*: Think about using this in a
method invocation. Can we override a
method of vector?
Example
let v = vector()
v.append(1)
v.append(2)
let internalData = exploitVector(v) // [1, 2]
vectorSafe()
How would you rewrite vector to deal
with the issue from above?
Example
let v = vectorSafe()
v.append(1)
v.append(2)
let internalData = exploitVector(v) // undefined
pubsub()
Make a function pubsub that
makes a publish/subscribe object.
It will reliably deliver all
publications to all subscribers
in the right order.
Example
let ps = pubsub()
ps.subscribe(log)
ps.publish('It works!') // log('It works!')
mapRecurse(array, predicate) ⇒ array
Make a function mapRecurse that
performs a transformation for each
element of a given array, recursively
| Param | Type |
|---|---|
| array | array |
| predicate | function |
Example
mapRecurse([1, 2, 3, 4], (x) => x * 2) // [ 2, 4, 6, 8 ]
filterRecurse(array, predicate) ⇒ array
Make a function filterRecurse that
takes in an array and a predicate
function and returns a new array by
filtering out all items using the
predicate, recursively.
| Param | Type |
|---|---|
| array | array |
| predicate | function |
Example
filterRecurse([1, 2, 3, 4], (x) => x % 2 === 0) // [ 2, 4 ]