class_activation_map
class_activation_map copied to clipboard
PyTorch implementation of "Learning Deep Features for Discriminative Localization"
trafficstars
Class Activation Map
Unofficial Pytorch Implementation of 'Learning Deep Features for Discriminative Localization'
Reference: Learning Deep Features for Discriminative Localization, CVPR2016
I used the Networks that trained ImageNet data from torchvision.models.
Requirements
- torch (version: 1.2.0)
- torchvision (version: 0.4.0)
- Pillow (version: 6.1.0)
- matplotlib (version: 3.1.1)
- numpy (version: 1.16.5)
Usage
Arguments
--gpu-no: Number of gpu device (-1: cpu, 0~n: gpu)--network: Network for backbone (Possible networks: resnet50, resnext50_32x4d, wide_resnet50_2, googlenet, densenet161, inception_v3, shufflenet_v2_x1_0, mobilenet_v2, mnasnet1_0)--image: Input image path--topk: Create k Class Activation Maps (CAMs) with the highest probability--imsize: Size to resize image (maintaining aspect ratio)--cropsize: Size to crop cetenr region--blend-alpha: Interpolation factor to overlay the input with CAM--save-path: Path to save outputs
Example Script
python cam.py --image imgs/input/img1.jpg --topk 3 --imsize 256 --network resnet50
Results
