exllama
exllama copied to clipboard
GPU Inference from IPython
Hello. Thanks for this amazing work. How do I implement the multi-GPU inference using Ipython and not the WebUI?
At present, I am implementing it this way. It is a 16k Context length Vicuna 4bit quantized model.
config.auto_map = [20.0,20.0,20.0,20.0] #Setting this for multi GPU
But still, it loads the model on just one GPU and goes OOM during inference.
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig, ExLlamaDeviceMap
from exllama.tokenizer import ExLlamaTokenizer
from exllama.generator import ExLlamaGenerator
import os, glob
# Directory containing model, tokenizer, generator
model_directory = "/home/ec2-user/.gccc/acc"
# Locate files we need within that directory
tokenizer_path = os.path.join(model_directory, "tokenizer.model")
model_config_path = os.path.join(model_directory, "config.json")
st_pattern = os.path.join(model_directory, "*.safetensors")
model_path = glob.glob(st_pattern)[0]
# Create config, model, tokenizer and generator
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
from exllama.tokenizer import ExLlamaTokenizer
from exllama.generator import ExLlamaGenerator
import os, glob
# Directory containing model, tokenizer, generator
model_directory = "/home/ec2-user/.gccc/acc"
# Locate files we need within that directory
tokenizer_path = os.path.join(model_directory, "tokenizer.model")
model_config_path = os.path.join(model_directory, "config.json")
st_pattern = os.path.join(model_directory, "*.safetensors")
model_path = glob.glob(st_pattern)
# Create config, model, tokenizer and generator
config = ExLlamaConfig(model_config_path) # create config from config.json
config.model_path = model_path # supply path to model weights file
config.max_seq_len = 16384
config.max_input_len = 4096 # Maximum length of input IDs in a single forward pass. Sequences longer than this will be processed in multiple steps
config.max_attention_size = 4096**2 # Sequences will be processed in chunks to keep the size of the attention weights matrix <= this
config.compress_pos_emb = 2.0 # Increase to compress positional embeddings applied to sequence
config.alpha = 2.0
config.auto_map = [20.0,20.0,20.0,20.0]
model = ExLlama(config)
tokenizer = ExLlamaTokenizer(tokenizer_path) # create tokenizer from tokenizer model file
cache = ExLlamaCache(model) # create cache for inference
generator = ExLlamaGenerator(model, tokenizer, cache) # create generator
# Configure generator
generator.disallow_tokens([tokenizer.eos_token_id])
generator.settings.token_repetition_penalty_max = 1.2
generator.settings.temperature = 0.05
generator.settings.top_p = 0.1
generator.settings.top_k = 40
generator.settings.typical = 0.0
prompt = f"""A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. The assistant always answer
the user questions from the input ONLY.
USER: {14k context TEXT}
ASSISTANT:"""
print("\n\n*** Generate:")
output = generator.generate_simple(prompt, max_new_tokens = 700)
print(output.split('ASSISTANT')[-1])
end = datetime.now()
prin("Time it took: ",str(end-start))