recommenders
recommenders copied to clipboard
loss is decreasing but val_loss is increasing
I have followed the tutorial to have the code below. I confused about the result from the code. The loss is decreasing. However, the val_loss is increasing from the beginning. The val_metrics is also decreasing, compared the result from Epoch 5 and Epoch 10.
This is very simple model. Why is it overfitting from the beginning?
This is the result:
Epoch 5: val_factorized_top_k/top_1_categorical_accuracy: 5.0000e-05 - val_factorized_top_k/top_5_categorical_accuracy: 0.0016 - val_factorized_top_k/top_10_categorical_accuracy: 0.0054 - val_factorized_top_k/top_50_categorical_accuracy: 0.0772 - val_factorized_top_k/top_100_categorical_accuracy: 0.1771 - val_loss: 28846.7070 - val_regularization_loss: 0.0000e+00 - val_total_loss: 28846.7070
Epoch 10: val_factorized_top_k/top_1_categorical_accuracy: 5.0000e-05 - val_factorized_top_k/top_5_categorical_accuracy: 3.5000e-04 - val_factorized_top_k/top_10_categorical_accuracy: 0.0016 - val_factorized_top_k/top_50_categorical_accuracy: 0.0512 - val_factorized_top_k/top_100_categorical_accuracy: 0.1436 - val_loss: 29914.9844 - val_regularization_loss: 0.0000e+00 - val_total_loss: 29914.9844
Epoch 15: val_factorized_top_k/top_1_categorical_accuracy: 0.0000e+00 - val_factorized_top_k/top_5_categorical_accuracy: 5.0000e-05 - val_factorized_top_k/top_10_categorical_accuracy: 0.0011 - val_factorized_top_k/top_50_categorical_accuracy: 0.0456 - val_factorized_top_k/top_100_categorical_accuracy: 0.1371 - val_loss: 30586.1602 - val_regularization_loss: 0.0000e+00 - val_total_loss: 30586.1602
from typing import Dict, Text
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs
ratings = tfds.load('movielens/100k-ratings', split="train")
movies = tfds.load('movielens/100k-movies', split="train")
ratings = ratings.map(lambda x: {
"movie_id": tf.strings.to_number(x["movie_id"]),
"user_id": tf.strings.to_number(x["user_id"])
})
movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"]))
class Model(tfrs.Model):
def __init__(self):
super().__init__()
# Set up user representation.
self.user_model = tf.keras.layers.Embedding(
input_dim=2000, output_dim=64)
# Set up movie representation.
self.item_model = tf.keras.layers.Embedding(
input_dim=2000, output_dim=64)
# Set up a retrieval task and evaluation metrics over the
# entire dataset of candidates.
self.task = tfrs.tasks.Retrieval(
metrics=tfrs.metrics.FactorizedTopK(
candidates=movies.batch(128).map(self.item_model)
)
)
def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:
user_embeddings = self.user_model(features["user_id"])
movie_embeddings = self.item_model(features["movie_id"])
return self.task(user_embeddings, movie_embeddings)
model = Model()
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))
# Randomly shuffle data and split between train and test.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)
train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)
# Train.
history = model.fit(
train.batch(4096),
validation_data=test.batch(4096),
validation_freq=5,
epochs=50)
# Evaluate.
model.evaluate(test.batch(4096), return_dict=True)
Hello @zhifeng-huang ! were you able to understand why this loss is increasing?
@leoniloris @zhifeng-huang I believe this is some sort of overfitting, the model tried to memorize training examples, but wasn't able to generalize well to the validation ones, I believe this might change if you added some features describing items and users