JavaScript-Algorithms
JavaScript-Algorithms copied to clipboard
九大排序算法
14.1 冒泡排序
原理:
从左到右,相邻元素进行比较,如果前一个元素值大于后一个元素值(正序),则交换,这样一轮下来,将最大的数在最右边冒泡出来。这样一轮一轮下来,最后实现从小到大排序。
动图演示:

代码实现:
function bubbleSort(arr) {
for (let i = 0; i < arr.length; i++) {
for (let j = 0; j < arr.length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
const temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
// 改进冒泡排序
function bubbleSort1(arr) {
for (let i = 0; i < arr.length; i++) {
// 提前退出冒泡循环的标识位
let flag = false;
for (let j = 0; j < arr.length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
const temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
flag = true;
// 表示发生了数据交换
}
}
// 没有数据交换
if(!flag) break
}
}
// 测试
let arr = [1, 3, 2, 5, 4]
bubbleSort(arr)
console.log(arr) // [1, 2, 3, 4, 5]
let arr1 = [1, 3, 2, 5, 4]
bubbleSort1(arr1)
console.log(arr1) // [1, 2, 3, 4, 5]
复杂度分析:
- 时间复杂度: 最好时间复杂度 O(n),平均时间复杂度 O(n^2^)
- 空间复杂度:O(1)
14.2 选择排序
原理
从未排序的序列中找到最大(或最小的)放在已排序序列的末尾(为空则放在起始位置),重复该操作,知道所有数据都已放入已排序序列中。
动态演示

代码实现
function selectionSort(arr) {
let length = arr.length,
indexMin
for(let i = 0; i < length - 1; i++) {
indexMin = i
for(let j = i; j < length; j++) {
if(arr[indexMin] > arr[j]) {
indexMin = j
}
}
if(i !== indexMin) {
let temp = arr[i]
arr[i] = arr[indexMin]
arr[indexMin] = temp
}
}
}
// 测试
let arr = [1, 3, 2, 5, 4]
selectionSort(arr)
console.log(arr) // [1, 2, 3, 4, 5]
复杂度分析
**时间复杂度:**O(n^2^)
**空间复杂度:**O(1)
14.3 归并排序
原理
它采用了分治策略,将数组分成2个较小的数组,然后每个数组再分成两个更小的数组,直至每个数组里只包含一个元素,然后将小数组不断的合并成较大的数组,直至只剩下一个数组,就是排序完成后的数组序列。
实现步骤:
- 将原始序列平分成两个小数组
- 判断小数组长度是否为1,不为1则继续分裂
- 原始数组被分称了长度为1的多个小数组,然后合并相邻小数组(有序合并)
- 不断合并小数组,直到合并称一个数组,则为排序后的数组序列
动图演示

代码实现
function mergeSort(arr) {
let array = mergeSortRec(arr)
return array
}
// 若分裂后的两个数组长度不为 1,则继续分裂
// 直到分裂后的数组长度都为 1,
// 然后合并小数组
function mergeSortRec(arr) {
let length = arr.length
if(length === 1) {
return arr
}
let mid = Math.floor(length / 2),
left = arr.slice(0, mid),
right = arr.slice(mid, length)
return merge(mergeSortRec(left), mergeSortRec(right))
}
// 顺序合并两个小数组left、right 到 result
function merge(left, right) {
let result = [],
ileft = 0,
iright = 0
while(ileft < left.length && iright < right.length) {
if(left[ileft] < right[iright]){
result.push(left[ileft ++])
} else {
result.push(right[iright ++])
}
}
while(ileft < left.length) {
result.push(left[ileft ++])
}
while(iright < right.length) {
result.push(right[iright ++])
}
return result
}
// 测试
let arr = [1, 3, 2, 5, 4]
console.log(mergeSort(arr)) // [1, 2, 3, 4, 5]
复杂度分析
**时间复杂度:**O(nlog~2~n)
**空间复杂度:**O(n)
14.4 快速排序
原理
和归并排序一致,它也使用了分治策略的思想,它也将数组分成一个个小数组,但与归并不同的是,它实际上并没有将它们分隔开。
快排使用了分治策略的思想,所谓分治,顾名思义,就是分而治之,将一个复杂的问题,分成两个或多个相似的子问题,在把子问题分成更小的子问题,直到更小的子问题可以简单求解,求解子问题,则原问题的解则为子问题解的合并。
快排的过程简单的说只有三步:
- 首先从序列中选取一个数作为基准数
- 将比这个数大的数全部放到它的右边,把小于或者等于它的数全部放到它的左边 (一次快排
partition) - 然后分别对基准的左右两边重复以上的操作,直到数组完全排序
具体按以下步骤实现:
- 1,创建两个指针分别指向数组的最左端以及最右端
- 2,在数组中任意取出一个元素作为基准
- 3,左指针开始向右移动,遇到比基准大的停止
- 4,右指针开始向左移动,遇到比基准小的元素停止,交换左右指针所指向的元素
- 5,重复3,4,直到左指针超过右指针,此时,比基准小的值就都会放在基准的左边,比基准大的值会出现在基准的右边
- 6,然后分别对基准的左右两边重复以上的操作,直到数组完全排序
注意这里的基准该如何选择喃?最简单的一种做法是每次都是选择最左边的元素作为基准:

但这对几乎已经有序的序列来说,并不是最好的选择,它将会导致算法的最坏表现。还有一种做法,就是选择中间的数或通过 Math.random() 来随机选取一个数作为基准,下面的代码实现就是以随机数作为基准。
代码实现
let quickSort = (arr) => {
quick(arr, 0 , arr.length - 1)
}
let quick = (arr, left, right) => {
let index
if(left < right) {
// 划分数组
index = partition(arr, left, right)
if(left < index - 1) {
quick(arr, left, index - 1)
}
if(index < right) {
quick(arr, index, right)
}
}
}
// 一次快排
let partition = (arr, left, right) => {
// 取中间项为基准
var datum = arr[Math.floor(Math.random() * (right - left + 1)) + left],
i = left,
j = right
// 开始调整
while(i <= j) {
// 左指针右移
while(arr[i] < datum) {
i++
}
// 右指针左移
while(arr[j] > datum) {
j--
}
// 交换
if(i <= j) {
swap(arr, i, j)
i += 1
j -= 1
}
}
return i
}
// 交换
let swap = (arr, i , j) => {
let temp = arr[i]
arr[i] = arr[j]
arr[j] = temp
}
// 测试
let arr = [1, 3, 2, 5, 4]
quickSort(arr)
console.log(arr) // [1, 2, 3, 4, 5]
// 第 2 个最大值
console.log(arr[arr.length - 2]) // 4
快排是从小到大排序,所以第 k 个最大值在 n-k 位置上
复杂度分析
- 时间复杂度:O(nlog~2~n)
- 空间复杂度:O(nlog~2~n)
14.5 希尔排序
1959年Shell发明,第一个突破 O(n^2^) 的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。
插入排序
插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入

代码实现:
function insertionSort(arr) {
let n = arr.length;
let preIndex, current;
for (let i = 1; i < n; i++) {
preIndex = i - 1;
current = arr[i];
while (preIndex >= 0 && arr[preIndex] > current) {
arr[preIndex + 1] = arr[preIndex];
preIndex--;
}
arr[preIndex + 1] = current;
}
return arr;
}
插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。
复杂度分析:
- 时间复杂度:O(n^2^)
- 空间复杂度:O(1)
希尔排序
回顾一下上面的插入排序:
- 第一趟插入排序后,我们得到的有效序列长度为
2 - 第二趟插入排序后,我们得到的有效序列长度为
3 - ...
- 直到这个序列有序
所以,如果序列足够乱的话,时间复杂度为 O(n^2^)
希尔排序又是如何优化的喃?
希尔排序又叫缩小增量排序,就是把数列进行分组(组内不停使用插入排序),直至从宏观上看起来有序,最后插入排序起来就容易了(无须多次移位或交换)。
其中组的数量称为 增量 ,显然的是,增量是不断递减的(直到增量为1)
那我们有是如何进行分组喃?
**往往的:**如果一个数列有 8 个元素,我们第一趟的增量是 4 ,第二趟的增量是 2 ,第三趟的增量是 1 。如果一个数列有 18 个元素,我们第一趟的增量是 9 ,第二趟的增量是 4 ,第三趟的增量是2 ,第四趟的增量是 1
很明显我们可以用一个序列来表示增量:n/2、(n/2)/2、...、1,每次增量都/2
例如:
let arr = [4, 1, 5, 8, 7, 3]
排序前:
- 将该数组看成三组(
Math.floor(arr.length/2)),分别是:[4, 1],[5, 8],[7, 3]
第一趟排序:
- 对三组数据分别进行插入排序,因此我们三个数组得到的结果为:
[1, 4],[5, 8],[3, 7]
此时数组是这样子的:[1, 4, 5, 8, 3, 7]
第二趟排序:
- 增量减少了,上面增量是
3,此时增量应该为1了,因此把[1, 4, 5, 8, 3, 7]看成一个数组(从宏观上是有序的了),对其进行插入排序,直至有序
代码实现:
function shellSort(arr) {
let n = arr.length;
for (let gap = Math.floor(n / 2); gap > 0; gap = Math.floor(gap / 2)) {
for (let i = gap; i < n; i++) {
let j = i;
let current = arr[i];
while (j - gap >= 0 && current < arr[j - gap]) {
arr[j] = arr[j - gap];
j = j - gap;
}
arr[j] = current;
}
}
return arr;
}
复杂度分析:
- 时间复杂度:O(nlogn)
- 空间复杂度:O(1)
14.6 计数排序
原理
计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。
作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。它是一种典型的拿空间换时间的排序算法

代码实现
function countingSort(arr, maxValue) => {
// 开辟的新的数组,用于将输入的数据值转化为键存储
var bucket = new Array(maxValue + 1),
sortedIndex = 0,
arrLen = arr.length,
bucketLen = maxValue + 1
// 存储
for (var i = 0; i < arrLen; i++) {
if (!bucket[arr[i]]) {
bucket[arr[i]] = 0
}
bucket[arr[i]]++
}
// 将数据从bucket按顺序写入arr中
for (var j = 0; j < bucketLen; j++) {
while(bucket[j]-- > 0) {
arr[sortedIndex++] = j
}
}
return arr
}
复杂度分析
- 时间复杂度:O(n+k)
- 空间复杂度:O(n+k)
14.7 桶排序
原理
桶排序是计数排序的升级版。它也是利用函数的映射关系。
桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。
完整步骤:
- 首先使用 arr 来存储频率
- 然后创建一个数组(有数量的桶),将频率作为数组下标,对于出现频率不同的数字集合,存入对应的数组下标(桶内)即可。
// 桶排序
let bucketSort = (arr) => {
let bucket = [], res = []
arr.forEach((value, key) => {
// 利用映射关系(出现频率作为下标)将数据分配到各个桶中
if(!bucket[value]) {
bucket[value] = [key]
} else {
bucket[value].push(key)
}
})
// 遍历获取出现频率
for(let i = 0;i <= bucket.length - 1;i++){
if(bucket[i]) {
res.push(...bucket[i])
}
}
return res
}
复杂度分析:
- 时间复杂度:O(n)
- 空间复杂度:O(n)
14.8 基数排序
原理
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。
完整步骤:
- 取得数组中的最大数,并取得位数;
- arr为原始数组,从最低位开始取每个位组成radix数组;
- 对radix进行计数排序(利用计数排序适用于小范围数的特点);
动图演示

代码实现
//LSD Radix Sort
var counter = [];
function radixSort(arr, maxDigit) {
var mod = 10;
var dev = 1;
for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
for(var j = 0; j < arr.length; j++) {
var bucket = parseInt((arr[j] % mod) / dev);
if(counter[bucket]==null) {
counter[bucket] = [];
}
counter[bucket].push(arr[j]);
}
var pos = 0;
for(var j = 0; j < counter.length; j++) {
var value = null;
if(counter[j]!=null) {
while ((value = counter[j].shift()) != null) {
arr[pos++] = value;
}
}
}
}
return arr;
}
复杂度分析
- 时间复杂度:基数排序基于分别排序,分别收集,所以是稳定的。但基数排序的性能比桶排序要略差,每一次关键字的桶分配都需要O(n)的时间复杂度,而且分配之后得到新的关键字序列又需要O(n)的时间复杂度。假如待排数据可以分为d个关键字,则基数排序的时间复杂度将是O(d*2n) ,当然d要远远小于n,因此基本上还是线性级别的
- 空间复杂度:O(n+k),其中k为桶的数量。一般来说n>>k,因此额外空间需要大概n个左右
基数排序 vs 计数排序 vs 桶排序
这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:
- 基数排序:根据键值的每位数字来分配桶;
- 计数排序:每个桶只存储单一键值;
- 桶排序:每个桶存储一定范围的数值;
14.9 堆排序
原理
堆是一棵完全二叉树,它可以使用数组存储,并且大顶堆的最大值存储在根节点(i=1),所以我们可以每次取大顶堆的根结点与堆的最后一个节点交换,此时最大值放入了有效序列的最后一位,并且有效序列减1,有效堆依然保持完全二叉树的结构,然后堆化,成为新的大顶堆,重复此操作,知道有效堆的长度为 0,排序完成。
完整步骤为:
- 将原序列(n个)转化成一个大顶堆
- 设置堆的有效序列长度为 n
- 将堆顶元素(第一个有效序列)与最后一个子元素(最后一个有效序列)交换,并有效序列长度减1
- 堆化有效序列,使有效序列重新称为一个大顶堆
- 重复以上2步,直到有效序列的长度为 1,排序完成
动图演示

代码实现
function heapSort(items) {
// 构建大顶堆
buildHeap(items, items.length-1)
// 设置堆的初始有效序列长度为 items.length - 1
let heapSize = items.length - 1
for (var i = items.length - 1; i > 1; i--) {
// 交换堆顶元素与最后一个有效子元素
swap(items, 1, i);
// 有效序列长度减 1
heapSize --;
// 堆化有效序列(有效序列长度为 currentHeapSize,抛除了最后一个元素)
heapify(items, heapSize, 1);
}
return items;
}
// 原地建堆
// items: 原始序列
// heapSize: 有效序列长度
function buildHeap(items, heapSize) {
// 从最后一个非叶子节点开始,自上而下式堆化
for (let i = Math.floor(heapSize/2); i >= 1; --i) {
heapify(items, heapSize, i);
}
}
function heapify(items, heapSize, i) {
// 自上而下式堆化
while (true) {
var maxIndex = i;
if(2*i <= heapSize && items[i] < items[i*2] ) {
maxIndex = i*2;
}
if(2*i+1 <= heapSize && items[maxIndex] < items[i*2+1] ) {
maxIndex = i*2+1;
}
if (maxIndex === i) break;
swap(items, i, maxIndex); // 交换
i = maxIndex;
}
}
function swap(items, i, j) {
let temp = items[i]
items[i] = items[j]
items[j] = temp
}
// 测试
var items = [,1, 9, 2, 8, 3, 7, 4, 6, 5]
heapSort(items)
// [empty, 1, 2, 3, 4, 5, 6, 7, 8, 9]
测试成功
复杂度分析
- **时间复杂度:**建堆过程的时间复杂度是
O(n),排序过程的时间复杂度是O(nlogn),整体时间复杂度是O(nlogn) - 空间复杂度:
O(1)
桶排序的第二个循环里,判断bucket[i]是否有值后,要将bucket[i]的数组里面的值填充为i
for (let i = 0; i < bucket.length; i++) {
if (bucket[i]) {
bucket[i].fill(i);
res.push(...bucket[i]);
}
}