scanpy
scanpy copied to clipboard
leiden alg with igraph flavor causes out of bounds freezing
Please make sure these conditions are met
- [X] I have checked that this issue has not already been reported.
- [X] I have confirmed this bug exists on the latest version of scanpy.
- [X] (optional) I have confirmed this bug exists on the main branch of scanpy.
What happened?
was running the standard pipeline on some data and when i run
sc.tl.leiden(em_adata,flavor='igraph',n_iterations=2,random_state=1653,directed=False)
it spits out infinite lines of ignored exceptions. it does not actually crash the kernel, but does bog it down and causes everything to to take much more time than necesarry.
I am working in a conda env on a Win 10 , 64bit, x64 system
the problem also occurs using the pbmc3k dataset
Minimal code sample
# example with own data, but same happens with pbmc3k data
sc.pp.filter_cells(em_adata, min_genes=200)
sc.pp.filter_genes(em_adata, min_cells=3)
em_adata.shape
# [out] -> (42753, 21636)
sc.pp.calculate_qc_metrics(em_adata, qc_vars=["mt"], percent_top=None, log1p=False, inplace=True)
em_adata.obs["outlier_mt"] = em_adata.obs.pct_counts_mt > 15
em_adata.obs["outlier_total"] = em_adata.obs.total_counts > 30000
em_adata.obs["outlier_ngenes"] = em_adata.obs.n_genes_by_counts > 6000
em_adata = em_adata[~em_adata.obs["outlier_mt"], :]
em_adata = em_adata[~em_adata.obs["outlier_total"], :]
em_adata = em_adata[~em_adata.obs["outlier_ngenes"], :]
sc.pp.filter_genes(em_adata,min_cells=1)
sc.pp.scrublet(em_adata)
em_adata.layers['counts'] = em_adata.X.copy()
sc.pp.normalize_total(em_adata)
sc.pp.log1p(em_adata)
sc.pp.highly_variable_genes(em_adata,flavor='seurat')
sc.pl.highly_variable_genes(em_adata)
em_adata = em_adata[:, em_adata.var["highly_variable"]]
em_adata.shape
# [out] -> (41749, 1425)
sc.pp.pca(em_adata, n_comps=50)
sc.pp.neighbors(em_adata)
sc.tl.umap(em_adata)
sc.tl.leiden(em_adata,flavor='igraph',n_iterations=2,random_state=1653,directed=False)
Error output
Exception ignored in: <class 'ValueError'>
Traceback (most recent call last):
File "numpy\\random\\mtrand.pyx", line 780, in numpy.random.mtrand.RandomState.randint
File "numpy\\random\\_bounded_integers.pyx", line 2881, in numpy.random._bounded_integers._rand_int32
ValueError: high is out of bounds for int32
Versions
conda env:
# Name Version Build Channel
_r-mutex 1.0.0 anacondar_1
anndata 0.10.6 pypi_0 pypi
anyio 4.3.0 pypi_0 pypi
argon2-cffi 23.1.0 pypi_0 pypi
argon2-cffi-bindings 21.2.0 py311h2bbff1b_0
array-api-compat 1.5.1 pypi_0 pypi
arrow 1.3.0 pypi_0 pypi
asttokens 2.4.1 pypi_0 pypi
async-lru 2.0.4 py311haa95532_0
attrs 23.2.0 pypi_0 pypi
babel 2.14.0 pypi_0 pypi
beautifulsoup4 4.12.3 pypi_0 pypi
bleach 6.1.0 pypi_0 pypi
brotli-python 1.0.9 py311hd77b12b_7
bzip2 1.0.8 h2bbff1b_5
ca-certificates 2023.12.12 haa95532_0
certifi 2024.2.2 py311haa95532_0
cffi 1.16.0 py311h2bbff1b_0
charset-normalizer 3.3.2 pypi_0 pypi
colorama 0.4.6 py311haa95532_0
comm 0.2.2 pypi_0 pypi
contourpy 1.2.0 pypi_0 pypi
cycler 0.12.1 pypi_0 pypi
debugpy 1.8.1 pypi_0 pypi
decorator 5.1.1 pyhd3eb1b0_0
defusedxml 0.7.1 pyhd3eb1b0_0
executing 2.0.1 pypi_0 pypi
fastjsonschema 2.19.1 pypi_0 pypi
fonttools 4.50.0 pypi_0 pypi
fqdn 1.5.1 pypi_0 pypi
h11 0.14.0 pypi_0 pypi
h5py 3.10.0 pypi_0 pypi
httpcore 1.0.4 pypi_0 pypi
httpx 0.27.0 pypi_0 pypi
idna 3.6 pypi_0 pypi
igraph 0.11.4 pypi_0 pypi
imageio 2.34.0 pypi_0 pypi
ipykernel 6.29.3 pypi_0 pypi
ipython 8.22.2 pypi_0 pypi
ipywidgets 8.1.2 pypi_0 pypi
isoduration 20.11.0 pypi_0 pypi
jedi 0.19.1 pypi_0 pypi
jinja2 3.1.3 py311haa95532_0
joblib 1.3.2 pypi_0 pypi
json5 0.9.22 pypi_0 pypi
jsonpointer 2.4 pypi_0 pypi
jsonschema 4.21.1 pypi_0 pypi
jsonschema-specifications 2023.12.1 pypi_0 pypi
jupyter-client 8.6.1 pypi_0 pypi
jupyter-core 5.7.2 pypi_0 pypi
jupyter-events 0.9.1 pypi_0 pypi
jupyter-lsp 2.2.4 pypi_0 pypi
jupyter-server 2.13.0 pypi_0 pypi
jupyter-server-terminals 0.5.3 pypi_0 pypi
jupyter_client 8.6.0 py311haa95532_0
jupyter_core 5.5.0 py311haa95532_0
jupyter_events 0.8.0 py311haa95532_0
jupyter_server 2.10.0 py311haa95532_0
jupyter_server_terminals 0.4.4 py311haa95532_1
jupyterlab 4.1.5 pypi_0 pypi
jupyterlab-pygments 0.3.0 pypi_0 pypi
jupyterlab-server 2.25.4 pypi_0 pypi
jupyterlab-widgets 3.0.10 pypi_0 pypi
jupyterlab_pygments 0.1.2 py_0
jupyterlab_server 2.25.1 py311haa95532_0
kiwisolver 1.4.5 pypi_0 pypi
lazy-loader 0.3 pypi_0 pypi
legacy-api-wrap 1.4 pypi_0 pypi
leidenalg 0.10.2 pypi_0 pypi
libffi 3.4.4 hd77b12b_0
libsodium 1.0.18 h62dcd97_0
llvmlite 0.42.0 pypi_0 pypi
m2w64-bwidget 1.9.10 2
m2w64-bzip2 1.0.6 6
m2w64-expat 2.1.1 2
m2w64-fftw 3.3.4 6
m2w64-flac 1.3.1 # Name Version Build Channel
_r-mutex 1.0.0 anacondar_1
anndata 0.10.6 pypi_0 pypi
anyio 4.3.0 pypi_0 pypi
argon2-cffi 23.1.0 pypi_0 pypi
argon2-cffi-bindings 21.2.0 py311h2bbff1b_0
array-api-compat 1.5.1 pypi_0 pypi
arrow 1.3.0 pypi_0 pypi
asttokens 2.4.1 pypi_0 pypi
async-lru 2.0.4 py311haa95532_0
attrs 23.2.0 pypi_0 pypi
babel 2.14.0 pypi_0 pypi
beautifulsoup4 4.12.3 pypi_0 pypi
bleach 6.1.0 pypi_0 pypi
brotli-python 1.0.9 py311hd77b12b_7
bzip2 1.0.8 h2bbff1b_5
ca-certificates 2023.12.12 haa95532_0
certifi 2024.2.2 py311haa95532_0
cffi 1.16.0 py311h2bbff1b_0
chardet 5.2.0 pypi_0 pypi
charset-normalizer 3.3.2 pypi_0 pypi
colorama 0.4.6 py311haa95532_0
comm 0.2.2 pypi_0 pypi
contourpy 1.2.0 pypi_0 pypi
cycler 0.12.1 pypi_0 pypi
debugpy 1.8.1 pypi_0 pypi
decorator 5.1.1 pyhd3eb1b0_0
defusedxml 0.7.1 pyhd3eb1b0_0
executing 2.0.1 pypi_0 pypi
fastjsonschema 2.19.1 pypi_0 pypi
fonttools 4.50.0 pypi_0 pypi
fqdn 1.5.1 pypi_0 pypi
h11 0.14.0 pypi_0 pypi
h5py 3.10.0 pypi_0 pypi
httpcore 1.0.4 pypi_0 pypi
httpx 0.27.0 pypi_0 pypi
idna 3.6 pypi_0 pypi
igraph 0.11.4 pypi_0 pypi
imageio 2.34.0 pypi_0 pypi
ipykernel 6.29.3 pypi_0 pypi
ipython 8.22.2 pypi_0 pypi
ipywidgets 8.1.2 pypi_0 pypi
isoduration 20.11.0 pypi_0 pypi
jedi 0.19.1 pypi_0 pypi
jinja2 3.1.3 py311haa95532_0
joblib 1.3.2 pypi_0 pypi
json5 0.9.22 pypi_0 pypi
jsonpointer 2.4 pypi_0 pypi
jsonschema 4.21.1 pypi_0 pypi
jsonschema-specifications 2023.12.1 pypi_0 pypi
jupyter-client 8.6.1 pypi_0 pypi
jupyter-core 5.7.2 pypi_0 pypi
jupyter-events 0.9.1 pypi_0 pypi
jupyter-lsp 2.2.4 pypi_0 pypi
jupyter-server 2.13.0 pypi_0 pypi
jupyter-server-terminals 0.5.3 pypi_0 pypi
jupyter_client 8.6.0 py311haa95532_0
jupyter_core 5.5.0 py311haa95532_0
jupyter_events 0.8.0 py311haa95532_0
jupyter_server 2.10.0 py311haa95532_0
jupyter_server_terminals 0.4.4 py311haa95532_1
jupyterlab 4.1.5 pypi_0 pypi
jupyterlab-pygments 0.3.0 pypi_0 pypi
jupyterlab-server 2.25.4 pypi_0 pypi
jupyterlab-widgets 3.0.10 pypi_0 pypi
jupyterlab_pygments 0.1.2 py_0
jupyterlab_server 2.25.1 py311haa95532_0
kiwisolver 1.4.5 pypi_0 pypi
lazy-loader 0.3 pypi_0 pypi
legacy-api-wrap 1.4 pypi_0 pypi
leidenalg 0.10.2 pypi_0 pypi
libffi 3.4.4 hd77b12b_0
libsodium 1.0.18 h62dcd97_0
llvmlite 0.42.0 pypi_0 pypi
m2w64-bwidget 1.9.10 2
m2w64-bzip2 1.0.6 6
m2w64-expat 2.1.1 2
m2w64-fftw 3.3.4 6
m2w64-flac 1.3.1 3
m2w64-gcc-libgfortran 5.3.0 6
m2w64-gcc-libs 5.3.0 7
m2w64-gcc-libs-core 5.3.0 7
m2w64-gettext 0.19.7 2
m2w64-gmp 6.1.0 2
m2w64-gsl 2.1 2
m2w64-libiconv 1.14 6
m2w64-libjpeg-turbo 1.4.2 3
m2w64-libogg 1.3.2 3
m2w64-libpng 1.6.21 2
m2w64-libsndfile 1.0.26 2
m2w64-libsodium 1.0.10 2
m2w64-libtiff 4.0.6 2
m2w64-libvorbis 1.3.5 2
m2w64-libwinpthread-git 5.0.0.4634.697f757 2
m2w64-libxml2 2.9.3 4
m2w64-mpfr 3.1.4 4
m2w64-openblas 0.2.19 1
m2w64-pcre 8.38 2
m2w64-speex 1.2rc2 3
m2w64-speexdsp 1.2rc3 3
m2w64-tcl 8.6.5 3
m2w64-tk 8.6.5 3
m2w64-tktable 2.10 5
m2w64-wineditline 2.101 5
m2w64-xz 5.2.2 2
m2w64-zeromq 4.1.4 2
m2w64-zlib 1.2.8 10
markupsafe 2.1.5 pypi_0 pypi
matplotlib 3.8.3 pypi_0 pypi
matplotlib-inline 0.1.6 py311haa95532_0
mistune 3.0.2 pypi_0 pypi
msys2-conda-epoch 20160418 1
natsort 8.4.0 pypi_0 pypi
nbclient 0.10.0 pypi_0 pypi
nbconvert 7.16.2 pypi_0 pypi
nbformat 5.10.3 pypi_0 pypi
nest-asyncio 1.6.0 py311haa95532_0
networkx 3.2.1 pypi_0 pypi
notebook 7.1.2 pypi_0 pypi
notebook-shim 0.2.4 pypi_0 pypi
numba 0.59.1 pypi_0 pypi
numpy 1.26.4 pypi_0 pypi
openssl 3.0.13 h2bbff1b_0
overrides 7.7.0 pypi_0 pypi
packaging 24.0 pypi_0 pypi
pandas 2.2.1 pypi_0 pypi
pandocfilters 1.5.1 pypi_0 pypi
parso 0.8.3 pyhd3eb1b0_0
patsy 0.5.6 pypi_0 pypi
pillow 10.2.0 pypi_0 pypi
pip 23.3.1 py311haa95532_0
platformdirs 4.2.0 pypi_0 pypi
plotly 5.20.0 pypi_0 pypi
prometheus-client 0.20.0 pypi_0 pypi
prometheus_client 0.14.1 py311haa95532_0
prompt-toolkit 3.0.43 py311haa95532_0
prompt_toolkit 3.0.43 hd3eb1b0_0
psutil 5.9.8 pypi_0 pypi
pure_eval 0.2.2 pyhd3eb1b0_0
pycparser 2.21 pyhd3eb1b0_0
pygments 2.17.2 pypi_0 pypi
pynndescent 0.5.11 pypi_0 pypi
pyparsing 3.1.2 pypi_0 pypi
pysocks 1.7.1 py311haa95532_0
python 3.11.8 he1021f5_0
python-dateutil 2.9.0.post0 pypi_0 pypi
python-fastjsonschema 2.16.2 py311haa95532_0
python-json-logger 2.0.7 py311haa95532_0
pytz 2023.3.post1 py311haa95532_0
pywin32 306 pypi_0 pypi
pywinpty 2.0.13 pypi_0 pypi
pyyaml 6.0.1 py311h2bbff1b_0
pyzmq 25.1.2 py311hd77b12b_0
r-askpass 1.0 r36_0
r-assertthat 0.2.1 r36h6115d3f_0
r-backports 1.1.4 r36h6115d3f_0
r-base 3.6.1 hf18239d_1
r-base64enc 0.1_3 r36h6115d3f_4
r-bh 1.69.0_1 r36h6115d3f_0
r-boot 1.3_20 r36h6115d3f_0
r-broom 0.5.2 r36h6115d3f_0
r-callr 3.2.0 r36h6115d3f_0
r-caret 6.0_83 r36h6115d3f_0
r-cellranger 1.1.0 r36h6115d3f_0
r-class 7.3_15 r36h6115d3f_0
r-cli 1.1.0 r36h6115d3f_0
r-clipr 0.6.0 r36h6115d3f_0
r-cluster 2.0.8 r36h6115d3f_0
r-codetools 0.2_16 r36h6115d3f_0
r-colorspace 1.4_1 r36h6115d3f_0
r-crayon 1.3.4 r36h6115d3f_0
r-curl 3.3 r36h6115d3f_0
r-data.table 1.12.2 r36h6115d3f_0
r-dbi 1.0.0 r36h6115d3f_0
r-dbplyr 1.4.0 r36h6115d3f_0
r-dichromat 2.0_0 r36h6115d3f_4
r-digest 0.6.18 r36h6115d3f_0
r-dplyr 0.8.0.1 r36h6115d3f_0
r-ellipsis 0.1.0 r36h6115d3f_0
r-essentials 3.6.0 r36_0
r-evaluate 0.13 r36h6115d3f_0
r-fansi 0.4.0 r36h6115d3f_0
r-forcats 0.4.0 r36h6115d3f_0
r-foreach 1.4.4 r36h6115d3f_0
r-foreign 0.8_71 r36h6115d3f_0
r-formatr 1.6 r36h6115d3f_0
r-fs 1.2.7 r36h6115d3f_0
r-generics 0.0.2 r36h6115d3f_0
r-ggplot2 3.1.1 r36h6115d3f_0
r-glmnet 2.0_16 r36h6115d3f_0
r-glue 1.3.1 r36h6115d3f_0
r-gower 0.2.0 r36h6115d3f_0
r-gtable 0.3.0 r36h6115d3f_0
r-haven 2.1.0 r36h6115d3f_0
r-hexbin 1.27.2 r36h6115d3f_0
r-highr 0.8 r36h6115d3f_0
r-hms 0.4.2 r36h6115d3f_0
r-htmltools 0.3.6 r36h6115d3f_0
r-htmlwidgets 1.3 r36h6115d3f_0
r-httpuv 1.5.1 r36h6115d3f_0
r-httr 1.4.0 r36h6115d3f_0
r-ipred 0.9_8 r36h6115d3f_0
r-irdisplay 0.7.0 r36h6115d3f_0
r-irkernel 0.8.15 r36_0
r-iterators 1.0.10 r36h6115d3f_0
r-jsonlite 1.6 r36h6115d3f_0
r-kernsmooth 2.23_15 r36h6115d3f_4
r-knitr 1.22 r36h6115d3f_0
r-labeling 0.3 r36h6115d3f_4
r-later 0.8.0 r36h6115d3f_0
r-lattice 0.20_38 r36h6115d3f_0
r-lava 1.6.5 r36h6115d3f_0
r-lazyeval 0.2.2 r36h6115d3f_0
r-lubridate 1.7.4 r36h6115d3f_0
r-magrittr 1.5 r36h6115d3f_4
r-maps 3.3.0 r36h6115d3f_0
r-markdown 0.9 r36h6115d3f_0
r-mass 7.3_51.3 r36h6115d3f_0
r-matrix 1.2_17 r36h6115d3f_0
r-mgcv 1.8_28 r36h6115d3f_0
r-mime 0.6 r36h6115d3f_0
r-modelmetrics 1.2.2 r36h6115d3f_0
r-modelr 0.1.4 r36h6115d3f_0
r-munsell 0.5.0 r36h6115d3f_0
r-nlme 3.1_139 r36h6115d3f_0
r-nnet 7.3_12 r36h6115d3f_0
r-numderiv 2016.8_1 r36h6115d3f_0
r-openssl 1.3 r36h6115d3f_0
r-pbdzmq 0.3_3 r36h6115d3f_0
r-pillar 1.3.1 r36h6115d3f_0
r-pkgconfig 2.0.2 r36h6115d3f_0
r-plogr 0.2.0 r36h6115d3f_0
r-plyr 1.8.4 r36h6115d3f_0
r-prettyunits 1.0.2 r36h6115d3f_0
r-processx 3.3.0 r36h6115d3f_0
r-prodlim 2018.04.18 r36h6115d3f_0
r-progress 1.2.0 r36h6115d3f_0
r-promises 1.0.1 r36h6115d3f_0
r-ps 1.3.0 r36h6115d3f_0
r-purrr 0.3.2 r36h6115d3f_0
r-quantmod 0.4_14 r36h6115d3f_0
r-r6 2.4.0 r36h6115d3f_0
r-randomforest 4.6_14 r36h6115d3f_0
r-rbokeh 0.6.3 r36_0
r-rcolorbrewer 1.1_2 r36h6115d3f_0
r-rcpp 1.0.1 r36h6115d3f_0
r-rcpproll 0.3.0 r36h6115d3f_0
r-readr 1.3.1 r36h6115d3f_0
r-readxl 1.3.1 r36h6115d3f_0
r-recipes 0.1.5 r36h6115d3f_0
r-recommended 3.6.0 r36_0
r-rematch 1.0.1 r36h6115d3f_0
r-repr 0.19.2 r36h6115d3f_0
r-reprex 0.2.1 r36h6115d3f_0
r-reshape2 1.4.3 r36h6115d3f_0
r-rlang 0.3.4 r36h6115d3f_0
r-rmarkdown 1.12 r36h6115d3f_0
r-rpart 4.1_15 r36h6115d3f_0
r-rstudioapi 0.10 r36h6115d3f_0
r-rvest 0.3.3 r36h6115d3f_0
r-scales 1.0.0 r36h6115d3f_0
r-selectr 0.4_1 r36h6115d3f_0
r-shiny 1.3.2 r36h6115d3f_0
r-sourcetools 0.1.7 r36h6115d3f_0
r-spatial 7.3_11 r36h6115d3f_4
r-squarem 2017.10_1 r36h6115d3f_0
r-stringi 1.4.3 r36h6115d3f_0
r-stringr 1.4.0 r36h6115d3f_0
r-survival 2.44_1.1 r36h6115d3f_0
r-sys 3.2 r36h6115d3f_0
r-tibble 2.1.1 r36h6115d3f_0
r-tidyr 0.8.3 r36h6115d3f_0
r-tidyselect 0.2.5 r36h6115d3f_0
r-tidyverse 1.2.1 r36h6115d3f_0
r-timedate 3043.102 r36h6115d3f_0
r-tinytex 0.12 r36h6115d3f_0
r-ttr 0.23_4 r36h6115d3f_0
r-utf8 1.1.4 r36h6115d3f_0
r-uuid 0.1_2 r36h6115d3f_4
r-viridislite 0.3.0 r36h6115d3f_0
r-whisker 0.3_2 r36h6115d3f_4
r-withr 2.1.2 r36h6115d3f_0
r-xfun 0.6 r36h6115d3f_0
r-xml2 1.2.0 r36h6115d3f_0
r-xtable 1.8_4 r36h6115d3f_0
r-xts 0.11_2 r36h6115d3f_0
r-yaml 2.2.0 r36h6115d3f_0
r-zoo 1.8_5 r36h6115d3f_0
referencing 0.33.0 pypi_0 pypi
requests 2.31.0 py311haa95532_1
rfc3339-validator 0.1.4 py311haa95532_0
rfc3986-validator 0.1.1 py311haa95532_0
rpds-py 0.18.0 pypi_0 pypi
scanpy 1.10.0 pypi_0 pypi
scikit-image 0.22.0 pypi_0 pypi
scikit-learn 1.4.1.post1 pypi_0 pypi
scikit-misc 0.3.1 pypi_0 pypi
scipy 1.12.0 pypi_0 pypi
seaborn 0.13.2 pypi_0 pypi
send2trash 1.8.2 py311haa95532_0
session-info 1.0.0 pypi_0 pypi
setuptools 68.2.2 py311haa95532_0
six 1.16.0 pyhd3eb1b0_1
sniffio 1.3.1 pypi_0 pypi
soupsieve 2.5 py311haa95532_0
sqlite 3.41.2 h2bbff1b_0
stack-data 0.6.3 pypi_0 pypi
stack_data 0.2.0 pyhd3eb1b0_0
statsmodels 0.14.1 pypi_0 pypi
stdlib-list 0.10.0 pypi_0 pypi
tenacity 8.2.3 pypi_0 pypi
terminado 0.18.1 pypi_0 pypi
texttable 1.7.0 pypi_0 pypi
threadpoolctl 3.4.0 pypi_0 pypi
tifffile 2024.2.12 pypi_0 pypi
tinycss2 1.2.1 py311haa95532_0
tk 8.6.12 h2bbff1b_0
tornado 6.4 pypi_0 pypi
tqdm 4.66.2 pypi_0 pypi
traitlets 5.14.2 pypi_0 pypi
types-python-dateutil 2.9.0.20240315 pypi_0 pypi
typing-extensions 4.9.0 py311haa95532_1
typing_extensions 4.9.0 py311haa95532_1
tzdata 2024.1 pypi_0 pypi
umap-learn 0.5.5 pypi_0 pypi
uri-template 1.3.0 pypi_0 pypi
urllib3 2.2.1 pypi_0 pypi
vc 14.2 h21ff451_1
vs2015_runtime 14.27.29016 h5e58377_2
wcwidth 0.2.13 pypi_0 pypi
webcolors 1.13 pypi_0 pypi
webencodings 0.5.1 pypi_0 pypi
websocket-client 1.7.0 pypi_0 pypi
wheel 0.41.2 py311haa95532_0
widgetsnbextension 4.0.10 pypi_0 pypi
win_inet_pton 1.1.0 py311haa95532_0
winpty 0.4.3 4
xz 5.4.6 h8cc25b3_0
yaml 0.2.5 he774522_0
zeromq 4.3.5 hd77b12b_0
zlib 1.2.13 h8cc25b3_0
@RubenVanEsch Can you provide a more minimally reproducible example?
For example, paring down a bit the above to just:
import scanpy as sc
em_adata = sc.datasets.pbmc3k()
sc.pp.pca(em_adata, n_comps=50)
sc.pp.neighbors(em_adata)
sc.tl.umap(em_adata)
sc.tl.leiden(em_adata,flavor='igraph',n_iterations=2,random_state=1653,directed=False)
does not yield any error. ~~Could you share your system info i.e., widows or mac?~~
@ilan-gold your minimal example causes the exact same error:
Exception ignored in: <class 'ValueError'> Traceback (most recent call last): File "numpy\random\mtrand.pyx", line 780, in numpy.random.mtrand.RandomState.randint File "numpy\random\_bounded_integers.pyx", line 2881, in numpy.random._bounded_integers._rand_int32 ValueError: high is out of bounds for int32
if you are curious, it spits the error out 14.210 times (71050 lines of error message)
EDIT: the random state does not seem to matter btw, also happens with different random states
Ok @RubenVanEsch we have to assume that this is a windows problem then. I think we will try to set up a test job and hopefully this catches the problem, although will likely catch others. What happens without a random_state set?
@ilan-gold same thing without random state I think there might be some windows error relating to numpy on linux defaulting to 64 bit integer vs windows sometimes defaulting to 32 bit (those were the first couple of google hits when i searched the error). though i dont know where the seed is generated in the source code though.
@RubenVanEsch Yes, and the issue there is that we're not the ones calling randint. We may be able to hack it. I'll have a look at how the pipeline errors out on our CI to maybe see where the call is coming from.
If the problem is windows, it's possible it will be solved by numpy 2.0. Not sure how easy the upgrade path to numpy 2.0 will be, however.
- https://numpy.org/devdocs/numpy_2_0_migration_guide.html#windows-default-integer
I got the test runner to do windows and while there were other errors, this one was seemingly not present: https://dev.azure.com/scverse/scanpy/_build/results?buildId=6287&view=logs&j=4eb20215-89fc-58e4-6218-2c2fa88ddf72&t=482e4b16-75d9-5f8c-9594-aadcd098d2cb&l=3977
We have a test that is strikingly similar to the more minimal example from above: https://github.com/scverse/scanpy/blob/main/scanpy/tests/notebooks/test_pbmc3k.py minus the umap. Could you try this test (which doesn't call umap) and also try it with umap so it's exactly as our little demo and let us know what you get? We also set resolution in the test. This test seems to actually pass on our CI.
In general there will be some back and forth here until we find someone near us with a windows machine since using CI to fix this problem isn't really feasible, but at least we can narrow the scope.
@RubenVanEsch, are you able to run this in WSL? Also, does the number you pass for random seed matter?
Also, does the number you pass for random seed matter?
From @RubenVanEsch :
EDIT: the random state does not seem to matter btw, also happens with different random states
@ivirshup @ilan-gold just got back to this, thought i could not install wsl as I am on a somewhat company restricted laptop, but turns out i can. installing it now (and probably using that from here on out). will run the tester in a bit and let you know
import scanpy as sc em_adata = sc.datasets.pbmc3k() sc.pp.pca(em_adata, n_comps=50) sc.pp.neighbors(em_adata) sc.tl.umap(em_adata) sc.tl.leiden(em_adata,flavor='igraph',n_iterations=2,random_state=1653,directed=False)
@melonora, would you mind running this on your windows machine with the latest scanpy release to see if you can reproduce it?
Yes I will and report back. Most likely in the evening.
I can reproduce, this is the error that I get:
From a first glance it seems like the default for randint is used which is int32. I can check whether switching to int64 fixes the issue.
I will see if I can reproduce on main and pinpoint where the problem arises.
Do you guys still want me to try and run the test from @ilan-gold ? Or is it fine now that it is reproduced on your side as well?
It is reproduced. It is due to the randint producing a value outside the range of the default dtype int32. On windows 64 bit systems the default is int32 despite the system being 64 bit. This is due to default for c long being int32 on these systems.
The part of the code that fails due to this is when using the context manager to perform the leiden clustering with igraph flavor.
In particular here is the piece of code: https://github.com/scverse/scanpy/blob/a33111f3b2caaa4ee5e33d02b6e98b143023341b/scanpy/tools/_leiden.py#L184-L185
Though the randint is called from within c code within igraph itself. @ivirshup, do you think asking for calling with dtype int64 would be a problem until this part is fixed on the numpy side?
Where would you put the dtype=int64 argument?
It wouldn't be on our side. As far as I know the numpy random number generator is called from within c code within igraph itself.
Since we can’t test this without your help, could you check if passing your own RNG here makes it work?
I can test tomorrow
I can reproduce this bug on my machine as well. I can supply additional information or context if needed, and I can test fixes
If the problem is windows, it's possible it will be solved by numpy 2.0. Not sure how easy the upgrade path to numpy 2.0 will be, however.
- https://numpy.org/devdocs/numpy_2_0_migration_guide.html#windows-default-integer
I can reproduce the error using Numpy 2.0.2.
@patrick-nicodemus What we need more than anything is someone to test out a fix and to confirm that using wsl prevents the problem.
See https://github.com/scverse/scanpy/pull/3041
The issue is that we don't have windows machines.
@ilan-gold If you want to try it out, I give instructions for how to reproduce the error with a Docker container for Windows in the cross-referenced issue. I also have tried it on WSL, and the problem is not present on WSL, so this is a workaround for Windows users. However, I am organizing a Python workshop in a few weeks, and I think it would add some additional administrative burden/overhead to the workshop to coordinate installing and setting up WSL (as we see in #3041, Ruben had trouble installing WSL and others might as well.) So, for me, using WSL is a suboptimal workaround.
If you want to try it out, I give instructions for how to reproduce the error with a Docker container for Windows in the cross-referenced issue
Yes please. I’m confused how Windows comes into play though since I thougt that Docker always runs on a Linux kernel – natively on Linux and in a VM on macOS and Windows.
Yes, this was my impression too. However there is a documented option "Switch to Windows containers" which is available if you right click on the Docker icon in the taskbar and this allows one to run vms using a Windows kernel.
On Fri, Sep 6, 2024, 3:36 AM Philipp A. @.***> wrote:
If you want to try it out, I give instructions for how to reproduce the error with a Docker container for Windows in the cross-referenced issue
Yes please. I’m confused how Windows comes into play though since I thougt that Docker always runs on a Linux kernel – natively on Linux and in a VM on macOS and Windows.
— Reply to this email directly, view it on GitHub https://github.com/scverse/scanpy/issues/2969#issuecomment-2333436219, or unsubscribe https://github.com/notifications/unsubscribe-auth/AH2OS47KNFAVTYUHGAMORILZVFLRXAVCNFSM6AAAAABFM3NQROVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDGMZTGQZTMMRRHE . You are receiving this because you were mentioned.Message ID: @.***>