[Question]: RateLimit Embedding
Question Validation
- [x] I have searched both the documentation and discord for an answer.
Question
Hello I am getting this warning that I would like to manage it. @dosubot
WARNING:llama_index.embeddings.openai.utils:Retrying llama_index.embeddings.openai.base.OpenAIEmbedding._aget_text_embeddings.
Based on my code, how can I manage it:
:param nodes: List of TextNodes to index.
:param embed_model: The model used for embedding the documents.
"""
from llama_index.core.data_structs.data_structs import IndexDict
try:
if self.vector_index is None:
# Create a new index if not already created
self.vector_index = VectorStoreIndex(
nodes=nodes,
use_async=False,
embed_model=embed_model,
storage_context=self.storage_context,
show_progress=True
)
print(self.vector_index.index_struct)
print("Created new index.")
else:
# If index exists, load it and insert the nodes
print("Loading existing index and inserting nodes.")
await self.load_index(embed_model)
# index_struct = IndexDict()
index_struct=self.vector_index._build_index_from_nodes(nodes)
# self.vector_index.insert_nodes(nodes)
# print(index_struct)
await self.vector_index._async_add_nodes_to_index(index_struct=index_struct, nodes=nodes, show_progress=True, min_seconds=12, max_seconds=120) #
except Exception as e:
print(e)
print(f"An error occurred while embedding the file: {e}")`
@dosubot
To manage the RateLimitError when using the OpenAIEmbedding with the Azure OpenAI API, you can implement a retry mechanism using the tenacity library. This approach allows you to handle rate limit errors by retrying the request with an exponential backoff strategy. Here's a code snippet that demonstrates how to set up this retry mechanism:
from tenacity import retry, wait_random_exponential, stop_after_attempt
# Define your retry strategy
retry_decorator = retry(
wait=wait_random_exponential(min=4, max=10), # Random exponential backoff between 4 and 10 seconds
stop=stop_after_attempt(5) # Maximum number of retries
)
# Apply the retry decorator to your function that makes the API call
@retry_decorator
async def call_openai_embedding():
# Your code to call the OpenAI API
pass
# Use the function
await call_openai_embedding()
In your existing code, you can apply this retry strategy to the part where you are calling the OpenAI API for embeddings. This will help manage the rate limit by automatically retrying the request if a RateLimitError occurs, with a delay that increases exponentially between retries [1].
To continue talking to Dosu, mention @dosu.
Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Bug Report | Other