Aircap_Pose_Estimator icon indicating copy to clipboard operation
Aircap_Pose_Estimator copied to clipboard

Aircap_Pose_Estimator : markerless motion capture using multiple autonomous micro aerial vehicles

Aircap_Pose_Estimator

Alt

Get this repo: git clone https://github.com/robot-perception-group/Aircap_Pose_Estimator.git

Data

  • Go to https://aircapdata.is.tue.mpg.de, register and login.
  • Download AirCap-Pose_Estimator-minimaldata from https://aircapdata.is.tue.mpg.de/downloads
  • Extract the contents (directory named "data") to the repo dir.

Install Requirements

  • Python2.7

  • ROS Melodic [http://wiki.ros.org/melodic]

  • Other requirementas pip install -r requirements.txt

  • torchgeometry v0.1.0

    it clone https://github.com/arraiyopensource/kornia.git
    d kornia
    it checkout v0.1.0
    ython setup.py install
    
  • Download SMPL from [http://smpl.is.tue.mpg.de/] and extract its content in the parent directory i.e. Aircap_Pose_Estimator/

    optional requirements

    • Mayavi for results visualization. Install Mayavi for Python2.7 from https://docs.enthought.com/mayavi/mayavi/installation.html#installing-with-pip

Run Aircap_Pose_Estimator demo

  • run Aircap_Pose_Estimator demo as in paper python fittingscript.py /path/to/result/directory
  • results will be saved in /path/to/result/directory. Mean error for each joint will be in the file /path/to/result/directory/final_err_res.npy
  • To visualize results, execute python viz_res.py /path/to/result/directory to launch the visualization of results alongwith the ground truth.