Deep-MIML-Network
                                
                                
                                
                                    Deep-MIML-Network copied to clipboard
                            
                            
                            
                        Learning to Separate Object Sounds by Watching Unlabeled Video (ECCV 2018)
Learning to Separate Object Sounds by Watching Unlabeled Video
Learning to Separate Object Sounds by Watching Unlabeled Video: [Project Page]    [arXiv]
This repository contains the deep MIML network implementation for our ECCV 2018 paper.
If you find our code or project useful in your research, please cite:
    @inproceedings{gao2018objectSounds,
      title={Learning to Separate Object Sounds by Watching Unlabeled Video},
      author={Gao, Ruohan and Feris, Rogerio and Grauman, Kristen},
      booktitle={ECCV},
      year={2018}
    }
Use the following command to train the deep MIML network:
python train.py --HDF5FileRoot /your_hdf5_file_root --name deepMIML --checkpoints_dir checkpoints --model MIML --batchSize 256 --learning_rate 0.001 --learning_rate_decrease_itr 5 --decay_factor 0.94 --display_freq 10 --save_epoch_freq 5 --save_latest_freq 500 --gpu_ids 0 --nThreads 2 --num_of_fc 1 --with_batchnorm --continue_train --niter 300 --L 15 --validation_on --validation_freq 50 --validation_batches 10 --selected_classes --using_multi_labels |& tee -a train.log
Acknowlegements
Our code borrows heavily from the the CycleGAN implementation https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/.