RBF_neural_network_python
RBF_neural_network_python copied to clipboard
RBF code
Could you help me to understand why you used here: rbflayer = RBFLayer(34, initializer=InitCentersKMeans(X_train), betas=3.0,input_shape=(568,)):
34 as output_dim ? I am trying to use this code on my dataset but I have problem. any help please?
Hello, thank your for reaching out yes the first parameters is your output_dim for my case its 34 i forgot to change it in the readme, tell me where did you find a problem? im happy to help.
Thank you so much for your reply, I am trying to adapt your code on my dataset, my dataset it look like this (consist of 7 columns and 1000 rows)
| Class | ||||||
|---|---|---|---|---|---|---|
| 0.25 | 0 | 0 | 0 | 0 | 0.25 | 1 |
| 0.625 | 0 | 0 | 0 | 0 | 0.625 | 4 |
| 1 | 0 | 0 | 0 | 0 | 1 | 2 |
| 0.5 | 0 | 0 | 0 | 0 | 0.5 | 1 |
| 0.75 | 0 | 0 | 0 | 0 | 0.75 | 1 |
| 0.375 | 0 | 0 | 0 | 0 | 0.375 | 3 |
| 1 | 0 | 0 | 0 | 0 | 1 | 2 |
| 1 | 0 | 0 | 0 | 0 | 1 | 2 |
| 1 | 0 | 0 | 0 | 0 | 1 | 2 |
So I updated on your code, I used
X = data.iloc[:, 0:6].values
y = data.iloc[:, 6].values
and reshape(-1, 1)
ohe = OneHotEncoder()
y = (ohe.fit_transform(y.reshape(-1, 1)).toarray())
instead of :
###X=data.iloc[2:570,:].values
###y = data.iloc[0:1,:].values
and then commented this
###X=np.transpose(X)
###y=np.transpose(y)
My problem I can not run the code in correct way yet, I got on this error: self.centers = self.add_weight(name='centers', File "c:\Users\RBF_neural_network_python-master\RBF_neuralNetwork .py", line 118, in call assert shape[1] == self.X.shape[1] AssertionError
Please i need your appreciated help.
This is all the code:
from keras import backend as K
###from keras.engine.topology import Layer original
from keras.layers import Layer
from keras.initializers import RandomUniform, Initializer, Constant
import numpy as np
class InitCentersRandom(Initializer):
""" Initializer for initialization of centers of RBF network
as random samples from the given data set.
# Arguments
X: matrix, dataset to choose the centers from (random rows
are taken as centers)
"""
def __init__(self, X):
self.X = X
def __call__(self, shape, dtype=None):
assert shape[1] == self.X.shape[1]
idx = np.random.randint(self.X.shape[0], size=shape[0])
return self.X[idx, :]
class RBFLayer(Layer):
""" Layer of Gaussian RBF units.
# Example
```python
model = Sequential()
model.add(RBFLayer(10,
initializer=InitCentersRandom(X),
betas=1.0,
input_shape=(1,)))
model.add(Dense(1))
```
# Arguments
output_dim: number of hidden units (i.e. number of outputs of the
layer)
initializer: instance of initiliazer to initialize centers
betas: float, initial value for betas
"""
def __init__(self, output_dim, initializer=None, betas=1.0, **kwargs):
self.output_dim = output_dim
self.init_betas = betas
if not initializer:
self.initializer = RandomUniform(0.0, 1.0)
else:
self.initializer = initializer
super(RBFLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.centers = self.add_weight(name='centers',
shape=(self.output_dim, input_shape[1]),
initializer=self.initializer,
trainable=True)
self.betas = self.add_weight(name='betas',
shape=(self.output_dim,),
initializer=Constant(
value=self.init_betas),
# initializer='ones',
trainable=True)
super(RBFLayer, self).build(input_shape)
def call(self, x):
C = K.expand_dims(self.centers)
H = K.transpose(C-K.transpose(x))
return K.exp(-self.betas * K.sum(H**2, axis=1))
# C = self.centers[np.newaxis, :, :]
# X = x[:, np.newaxis, :]
# diffnorm = K.sum((C-X)**2, axis=-1)
# ret = K.exp( - self.betas * diffnorm)
# return ret
def compute_output_shape(self, input_shape):
return (input_shape[0], self.output_dim)
def get_config(self):
# have to define get_config to be able to use model_from_json
config = {
'output_dim': self.output_dim
}
base_config = super(RBFLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
from keras.initializers import Initializer
from sklearn.cluster import KMeans
class InitCentersKMeans(Initializer):
""" Initializer for initialization of centers of RBF network
by clustering the given data set.
# Arguments
X: matrix, dataset
"""
def __init__(self, X, max_iter=100):
self.X = X
self.max_iter = max_iter
def __call__(self, shape, dtype=None):
assert shape[1] == self.X.shape[1]
n_centers = shape[0]
km = KMeans(n_clusters=n_centers, max_iter=self.max_iter, verbose=0)
km.fit(self.X)
return km.cluster_centers_
# Commented out IPython magic to ensure Python compatibility.
import numpy as np, pandas as pd
from keras.models import Sequential
from keras.layers.core import Dense
from keras.layers import Activation
from keras.optimizers import RMSprop
import matplotlib.pyplot as plt
data = pd.read_csv('C:/Users/RBF_neural_network_python-master/train3.csv',header=None)
data.head(10) #Return 10 rows of data
datatrans=np.transpose(data)
print(datatrans[0].value_counts())
datatrans[0].value_counts()[:].plot(kind='bar', alpha=0.5)
plt.xlabel('\n Figure 1: Répartition selon classes \n', fontsize='17', horizontalalignment='center')
plt.tick_params(axis='x', direction='out', length=10, width=3)
plt.show() #2300
#data spliting
###X=data.iloc[2:570,:].values
###y = data.iloc[0:1,:].values
X = data.iloc[:, 0:6].values
y = data.iloc[:, 6].values
#data rotation
###X=np.transpose(X)
###y=np.transpose(y)
print('rotation ')
###print(X)
###print(y)
#standarizing
from sklearn.preprocessing import MinMaxScaler
X = MinMaxScaler().fit_transform(X)
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
y = (ohe.fit_transform(y.reshape(-1, 1)).toarray())
print('resulats de scalling')
print(X,y)
from sklearn.model_selection import train_test_split
from keras.optimizers import SGD
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2,random_state=0)#80% train et 20% test
model = Sequential()
rbflayer = RBFLayer(34,
initializer=InitCentersKMeans(X_train),
betas=3.0,
input_shape=(568,))
model.add(rbflayer)
model.add(Dense(4))
model.add(Activation('linear'))
model.compile(loss='mean_squared_error',
optimizer=RMSprop(), metrics=['accuracy'])
print(model.summary())
history1 = model.fit(X_train, y_train, epochs=1000, batch_size=32)
import matplotlib.pyplot as plt
plt.plot(history1.history['accuracy'])
plt.plot(history1.history['loss'])
plt.title('train accuracy and loss')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['accuracy', 'loss'], loc='upper left')
plt.show()
# saving to and loading from file
z_model = "C:/Users/RBF_neural_network_python-master/my_file.h5"
print("Save model to file {} ... ".format(z_model), end="")
model.save(z_model)
print("OK")
#model already saved in file
from tensorflow.python.keras.models import load_model
newmodel1= load_model("C:/Users/RBF_neural_network_python-master/my_file.h5",custom_objects={'RBFLayer': RBFLayer})
print("OK")
# Evaluate the model on the test data using `evaluate`
print("Evaluate on test data")
results = newmodel1.evaluate(X_test, y_test, batch_size=32)
print("test loss:", results[0])
print("test accuracy:",results[1]*100,'%')
# y_pred = newmodel1.predict(X_test)
# #Converting predictions to label
# pred = list()
# for i in range(len(y_pred)):
# pred.append(np.argmax(y_pred[i]))
# #Converting one hot encoded test label to label
# test = list()
# for i in range(len(y_test)):
# test.append(np.argmax(y_test[i]))
# from sklearn.metrics import accuracy_score
# a = accuracy_score(pred,test)
# print('Test Accuracy is:', a*100)
There is no answer!! :(
I am also having the same issue :( Did you end up fixing it in the end?