torchtitan
torchtitan copied to clipboard
Adding Llama 1B and 3B model.
Based on the HuggingFace models ( https://huggingface.co/meta-llama/Llama-3.2-1B and https://huggingface.co/meta-llama/Llama-3.2-3B ) .
1B:
LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(128256, 2048)
(layers): ModuleList(
(0-15): 16 x LlamaDecoderLayer(
(self_attn): LlamaSdpaAttention(
(q_proj): Linear(in_features=2048, out_features=2048, bias=False)
(k_proj): Linear(in_features=2048, out_features=512, bias=False)
(v_proj): Linear(in_features=2048, out_features=512, bias=False)
(o_proj): Linear(in_features=2048, out_features=2048, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=2048, out_features=8192, bias=False)
(up_proj): Linear(in_features=2048, out_features=8192, bias=False)
(down_proj): Linear(in_features=8192, out_features=2048, bias=False)
(act_fn): SiLU()
)
(input_layernorm): LlamaRMSNorm((2048,), eps=1e-05)
(post_attention_layernorm): LlamaRMSNorm((2048,), eps=1e-05)
)
)
(norm): LlamaRMSNorm((2048,), eps=1e-05)
(rotary_emb): LlamaRotaryEmbedding()
)
(lm_head): Linear(in_features=2048, out_features=128256, bias=False)
)
LlamaConfig {
"_attn_implementation_autoset": true,
"_name_or_path": "meta-llama/Llama-3.2-1B",
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"eos_token_id": 128001,
"head_dim": 64,
"hidden_act": "silu",
"hidden_size": 2048,
"initializer_range": 0.02,
"intermediate_size": 8192,
"max_position_embeddings": 131072,
"mlp_bias": false,
"model_type": "llama",
"num_attention_heads": 32,
"num_hidden_layers": 16,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 32.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
},
"rope_theta": 500000.0,
"tie_word_embeddings": true,
"torch_dtype": "bfloat16",
"transformers_version": "4.47.1",
"use_cache": true,
"vocab_size": 128256
}
3B:
LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(128256, 3072)
(layers): ModuleList(
(0-27): 28 x LlamaDecoderLayer(
(self_attn): LlamaSdpaAttention(
(q_proj): Linear(in_features=3072, out_features=3072, bias=False)
(k_proj): Linear(in_features=3072, out_features=1024, bias=False)
(v_proj): Linear(in_features=3072, out_features=1024, bias=False)
(o_proj): Linear(in_features=3072, out_features=3072, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=3072, out_features=8192, bias=False)
(up_proj): Linear(in_features=3072, out_features=8192, bias=False)
(down_proj): Linear(in_features=8192, out_features=3072, bias=False)
(act_fn): SiLU()
)
(input_layernorm): LlamaRMSNorm((3072,), eps=1e-05)
(post_attention_layernorm): LlamaRMSNorm((3072,), eps=1e-05)
)
)
(norm): LlamaRMSNorm((3072,), eps=1e-05)
(rotary_emb): LlamaRotaryEmbedding()
)
(lm_head): Linear(in_features=3072, out_features=128256, bias=False)
)
LlamaConfig {
"_attn_implementation_autoset": true,
"_name_or_path": "meta-llama/Llama-3.2-3B",
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"eos_token_id": 128001,
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 3072,
"initializer_range": 0.02,
"intermediate_size": 8192,
"max_position_embeddings": 131072,
"mlp_bias": false,
"model_type": "llama",
"num_attention_heads": 24,
"num_hidden_layers": 28,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 32.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
},
"rope_theta": 500000.0,
"tie_word_embeddings": true,
"torch_dtype": "bfloat16",
"transformers_version": "4.47.1",
"use_cache": true,
"vocab_size": 128256
}
@tianyu-l , the source is HuggingFace as mentioned above. I am seeing TorchTitan output as follows.
1B: INFO - Model llama3 1B size: 1,397,819,392 total parameters 3B: INFO - Model llama3 3B size: 4,399,475,712 total parameters