pytorch
pytorch copied to clipboard
Fix broken dynamo cudagraph test
Tried to run the test locally and discovered that AOTAutograd has been changed to AotAutograd which broke 7 of the dynamo cuda graphs tests
I guess this definitively answers the question on whether this should be torchdynamo XD # TODO: maybe this should live in torchdynamo instead
There's still one test failing but to make it green for now I just added torchdynamo.config.raise_on_backend_error = False
Repro of problem before fix
>>> from torchdynamo.optimizations.training import AOTAutogradStrategy
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: cannot import name 'AOTAutogradStrategy' from 'torchdynamo.optimizations.training' (/home/ubuntu/torchdynamo/torchdynamo/optimizations/training.py)
Logs after
(dynamo) ubuntu@ip-172-31-27-252:~/pytorch/test$ pytest test_dynamo_cudagraphs.py
========================================================================================= test session starts ==========================================================================================
platform linux -- Python 3.8.13, pytest-7.1.2, pluggy-1.0.0
rootdir: /home/ubuntu/pytorch, configfile: pytest.ini
collected 8 items
test_dynamo_cudagraphs.py .......F [100%]
=============================================================================================== FAILURES ===============================================================================================
______________________________________________________________________________ TestDynamoCudaGraphs.test_mutated_metadata ______________________________________________________________________________
Traceback (most recent call last):
File "/home/ubuntu/torchdynamo/torchdynamo/output_graph.py", line 363, in call_user_compiler
compiled_fn = self.compiler_fn(gm, self.example_inputs())
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 191, in __call__
result = self.candidate(*self.example_inputs)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 696, in forward
return compiled_f(
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 94, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 224, in forward
fx_g = make_fx(joint_forward_backward, aot_decompositions)(
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 568, in wrapped
t = dispatch_trace(wrap_key(f, args, proxy_mode), tracer=fx_tracer, concrete_args=tuple(phs))
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 94, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 351, in dispatch_trace
graph = tracer.trace(root, concrete_args)
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 94, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 715, in trace
(self.create_arg(fn(*args)),),
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 550, in flatten_fn
tree_out = root_fn(*tree_args)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 376, in wrapped
out = f(*tree_args)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 77, in joint_forward_backward
outs = fn(*primals)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 660, in functional_call
out = mod(*args[params_len:], **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/graph_module.py", line 655, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/graph_module.py", line 277, in __call__
raise e
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/graph_module.py", line 267, in __call__
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 693, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 320, in call_module
return forward(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 686, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1186, in _call_impl
return forward_call(*input, **kwargs)
File "<eval_with_key>.86", line 6, in forward
resize_ = clone.resize_(20)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/utils/_python_dispatch.py", line 74, in wrapped
return f(self, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 404, in __torch_dispatch__
return proxy_call(self, func_overload, args, kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 176, in proxy_call
func_overload(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/_ops.py", line 56, in __call__
return self._op(*args, **kwargs or {})
RuntimeError: Trying to resize storage that is not resizable
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/ubuntu/pytorch/test/test_dynamo_cudagraphs.py", line 169, in test_mutated_metadata
rx = model(x)
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 151, in catch_errors
return callback(frame, cache_size)
File "/home/ubuntu/torchdynamo/torchdynamo/convert_frame.py", line 347, in _convert_frame
result = inner_convert(frame, cache_size)
File "/home/ubuntu/torchdynamo/torchdynamo/convert_frame.py", line 108, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/torchdynamo/torchdynamo/convert_frame.py", line 288, in _convert_frame_assert
code = transform_code_object(frame.f_code, transform)
File "/home/ubuntu/torchdynamo/torchdynamo/bytecode_transformation.py", line 338, in transform_code_object
transformations(instructions, code_options)
File "/home/ubuntu/torchdynamo/torchdynamo/convert_frame.py", line 264, in transform
tracer.run()
File "/home/ubuntu/torchdynamo/torchdynamo/symbolic_convert.py", line 312, in run
and self.step()
File "/home/ubuntu/torchdynamo/torchdynamo/symbolic_convert.py", line 290, in step
getattr(self, inst.opname)(inst)
File "/home/ubuntu/torchdynamo/torchdynamo/symbolic_convert.py", line 1342, in RETURN_VALUE
self.output.compile_subgraph(self)
File "/home/ubuntu/torchdynamo/torchdynamo/output_graph.py", line 284, in compile_subgraph
self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root)
File "/home/ubuntu/torchdynamo/torchdynamo/output_graph.py", line 349, in compile_and_call_fx_graph
compiled_fn = self.call_user_compiler(gm)
File "/home/ubuntu/torchdynamo/torchdynamo/output_graph.py", line 372, in call_user_compiler
raise BackendCompilerFailed(self.compiler_fn, e) from e
torchdynamo.exc.BackendCompilerFailed: ? raised RuntimeError: Trying to resize storage that is not resizable
You can suppress this exception and fall back to eager by setting:
torchdynamo.config.raise_on_backend_error = False
----------------------------------------------------------------------------------------- Captured stderr call -----------------------------------------------------------------------------------------
----------------------------------------
TORCHDYNAMO: backend compiler failed
Traceback (most recent call last):
File "/home/ubuntu/torchdynamo/torchdynamo/output_graph.py", line 363, in call_user_compiler
compiled_fn = self.compiler_fn(gm, self.example_inputs())
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 191, in __call__
result = self.candidate(*self.example_inputs)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 696, in forward
return compiled_f(
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 94, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 224, in forward
fx_g = make_fx(joint_forward_backward, aot_decompositions)(
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 568, in wrapped
t = dispatch_trace(wrap_key(f, args, proxy_mode), tracer=fx_tracer, concrete_args=tuple(phs))
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 94, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 351, in dispatch_trace
graph = tracer.trace(root, concrete_args)
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 94, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 715, in trace
(self.create_arg(fn(*args)),),
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 550, in flatten_fn
tree_out = root_fn(*tree_args)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 376, in wrapped
out = f(*tree_args)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 77, in joint_forward_backward
outs = fn(*primals)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 660, in functional_call
out = mod(*args[params_len:], **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/graph_module.py", line 655, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/graph_module.py", line 277, in __call__
raise e
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/graph_module.py", line 267, in __call__
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 693, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 320, in call_module
return forward(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 686, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1186, in _call_impl
return forward_call(*input, **kwargs)
File "<eval_with_key>.86", line 6, in forward
resize_ = clone.resize_(20)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/utils/_python_dispatch.py", line 74, in wrapped
return f(self, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 404, in __torch_dispatch__
return proxy_call(self, func_overload, args, kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 176, in proxy_call
func_overload(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/_ops.py", line 56, in __call__
return self._op(*args, **kwargs or {})
RuntimeError: Trying to resize storage that is not resizable
----------------------------------------
------------------------------------------------------------------------------------------ Captured log call -------------------------------------------------------------------------------------------
ERROR torchdynamo.eval_frame:eval_frame.py:201 error in verify_correctness
Traceback (most recent call last):
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 191, in __call__
result = self.candidate(*self.example_inputs)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 696, in forward
return compiled_f(
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 94, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 224, in forward
fx_g = make_fx(joint_forward_backward, aot_decompositions)(
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 568, in wrapped
t = dispatch_trace(wrap_key(f, args, proxy_mode), tracer=fx_tracer, concrete_args=tuple(phs))
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 94, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 351, in dispatch_trace
graph = tracer.trace(root, concrete_args)
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 94, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 715, in trace
(self.create_arg(fn(*args)),),
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 550, in flatten_fn
tree_out = root_fn(*tree_args)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 376, in wrapped
out = f(*tree_args)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 77, in joint_forward_backward
outs = fn(*primals)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 660, in functional_call
out = mod(*args[params_len:], **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/graph_module.py", line 655, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/graph_module.py", line 277, in __call__
raise e
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/graph_module.py", line 267, in __call__
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 693, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 320, in call_module
return forward(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 686, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1186, in _call_impl
return forward_call(*input, **kwargs)
File "<eval_with_key>.86", line 6, in forward
resize_ = clone.resize_(20)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/utils/_python_dispatch.py", line 74, in wrapped
return f(self, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 404, in __torch_dispatch__
return proxy_call(self, func_overload, args, kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 176, in proxy_call
func_overload(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/_ops.py", line 56, in __call__
return self._op(*args, **kwargs or {})
RuntimeError: Trying to resize storage that is not resizable
ERROR root:eval_frame.py:154 Error while processing frame
Traceback (most recent call last):
File "/home/ubuntu/torchdynamo/torchdynamo/output_graph.py", line 363, in call_user_compiler
compiled_fn = self.compiler_fn(gm, self.example_inputs())
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 191, in __call__
result = self.candidate(*self.example_inputs)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 696, in forward
return compiled_f(
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 94, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 224, in forward
fx_g = make_fx(joint_forward_backward, aot_decompositions)(
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 568, in wrapped
t = dispatch_trace(wrap_key(f, args, proxy_mode), tracer=fx_tracer, concrete_args=tuple(phs))
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 94, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 351, in dispatch_trace
graph = tracer.trace(root, concrete_args)
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 94, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 715, in trace
(self.create_arg(fn(*args)),),
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 550, in flatten_fn
tree_out = root_fn(*tree_args)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 376, in wrapped
out = f(*tree_args)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 77, in joint_forward_backward
outs = fn(*primals)
File "/home/ubuntu/functorch/functorch/_src/aot_autograd.py", line 660, in functional_call
out = mod(*args[params_len:], **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/graph_module.py", line 655, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/graph_module.py", line 277, in __call__
raise e
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/graph_module.py", line 267, in __call__
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 693, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 320, in call_module
return forward(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/_symbolic_trace.py", line 686, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1186, in _call_impl
return forward_call(*input, **kwargs)
File "<eval_with_key>.86", line 6, in forward
resize_ = clone.resize_(20)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/utils/_python_dispatch.py", line 74, in wrapped
return f(self, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 404, in __torch_dispatch__
return proxy_call(self, func_overload, args, kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/fx/experimental/proxy_tensor.py", line 176, in proxy_call
func_overload(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/dynamo/lib/python3.8/site-packages/torch/_ops.py", line 56, in __call__
return self._op(*args, **kwargs or {})
RuntimeError: Trying to resize storage that is not resizable
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/ubuntu/torchdynamo/torchdynamo/eval_frame.py", line 151, in catch_errors
return callback(frame, cache_size)
File "/home/ubuntu/torchdynamo/torchdynamo/convert_frame.py", line 347, in _convert_frame
result = inner_convert(frame, cache_size)
File "/home/ubuntu/torchdynamo/torchdynamo/convert_frame.py", line 108, in _fn
return fn(*args, **kwargs)
File "/home/ubuntu/torchdynamo/torchdynamo/convert_frame.py", line 288, in _convert_frame_assert
code = transform_code_object(frame.f_code, transform)
File "/home/ubuntu/torchdynamo/torchdynamo/bytecode_transformation.py", line 338, in transform_code_object
transformations(instructions, code_options)
File "/home/ubuntu/torchdynamo/torchdynamo/convert_frame.py", line 264, in transform
tracer.run()
File "/home/ubuntu/torchdynamo/torchdynamo/symbolic_convert.py", line 312, in run
and self.step()
File "/home/ubuntu/torchdynamo/torchdynamo/symbolic_convert.py", line 290, in step
getattr(self, inst.opname)(inst)
File "/home/ubuntu/torchdynamo/torchdynamo/symbolic_convert.py", line 1342, in RETURN_VALUE
self.output.compile_subgraph(self)
File "/home/ubuntu/torchdynamo/torchdynamo/output_graph.py", line 284, in compile_subgraph
self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root)
File "/home/ubuntu/torchdynamo/torchdynamo/output_graph.py", line 349, in compile_and_call_fx_graph
compiled_fn = self.call_user_compiler(gm)
File "/home/ubuntu/torchdynamo/torchdynamo/output_graph.py", line 372, in call_user_compiler
raise BackendCompilerFailed(self.compiler_fn, e) from e
torchdynamo.exc.BackendCompilerFailed: ? raised RuntimeError: Trying to resize storage that is not resizable
You can suppress this exception and fall back to eager by setting:
torchdynamo.config.raise_on_backend_error = False
======================================================================================= short test summary info ========================================================================================
FAILED test_dynamo_cudagraphs.py::TestDynamoCudaGraphs::test_mutated_metadata - torchdynamo.exc.BackendCompilerFailed: ? raised RuntimeError: Trying to resize storage that is not resizable
=============================================================================== 1 failed, 7 passed, 9 warnings in 4.06s ================================================================================
:link: Helpful links
- :test_tube: See artifacts and rendered test results at hud.pytorch.org/pr/83128
- :page_facing_up: Preview Python docs built from this PR
- :page_facing_up: Preview C++ docs built from this PR
- :question:Need help or want to give feedback on the CI? Visit our office hours
:white_check_mark: No Failures (0 Pending)
As of commit e0ecef9c86 (more details on the Dr. CI page):
Expand to see more
:green_heart: :green_heart: Looks good so far! There are no failures yet. :green_heart: :green_heart:
This comment was automatically generated by Dr. CI (expand for details).
Please report bugs/suggestions to the (internal) Dr. CI Users group.
This will be subsumed by https://github.com/pytorch/torchdynamo/pull/757
Sounds good, I'll repurpose this PR to delete what we no longer need in pytorch/pytorch
Tomorrow I'm spending some time looking at improving logging in the fx partitioner
Yes plz
@pytorchbot merge -g
@pytorchbot successfully started a merge job. Check the current status here
Hey @msaroufim. You've committed this PR, but it does not have both a 'release notes: ...' and 'topics: ...' label. Please add one of each to the PR. The 'release notes: ...' label should represent the part of PyTorch that this PR changes (fx, autograd, distributed, etc) and the 'topics: ...' label should represent the kind of PR it is (not user facing, new feature, bug fix, perf improvement, etc). The list of valid labels can be found here for the 'release notes: ...' and here for the 'topics: ...'. For changes that are 'topic: not user facing' there is no need for a release notes label.