ReProCS
ReProCS copied to clipboard
MATLAB implementation of "Provable Dynamic Robust PCA or Robust Subspace tracking", IEEE Transactions on Information Theory, 2019.
This folder contains the code accompanying the following paper.
[1] "Provable Dynamic Robust PCA or Robust Subspace Tracking", Praneeth Narayanamurthy and Namrata Vaswani, IEEE Trans. Info. Theory, 2019 (available at arXiv:1705.08948).
List of main files:
1. DemoFB.m - Wrapper containing the real video foreground background separation. The sparse recovery step here uses ell-1 minimization.
2. DemoDynRPCA.m - Wrapper containing the simulated data experiments. The sparse recovery step here uses CoSAMP. We can use ell-1 too if necessary.
3. AutoReProCS - main function which implements the ReProCS algororithm using CoSaMP.
4. ReProCS_real - main function which implements the ReProCS algorithm using ell-1.
Folders:
1. Data folder (120 MB) contains .mat files for videos. Pushing this too, because the original source web-page (http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html) is down.
2. YALL1 - folder containing files to implement ell-1 minimization.
Helper files:
1. ncrpca -- code implemented Non-convex Robust PCA, NIPS 14 downloaded from authors' website and its accompaniments
2. cgls -- fast method to implement least squares
For any further questions/suggestions please contact me @ pkurpadn iastate edu (insert obvious symbols)