deep-learning-from-scratch-2 icon indicating copy to clipboard operation
deep-learning-from-scratch-2 copied to clipboard

『ゼロから作る Deep Learning ❷』(O'Reilly Japan, 2018)

Results 9 deep-learning-from-scratch-2 issues
Sort by recently updated
recently updated
newest added

I want to realize the code that simple Skip-gram model fit training data. So I try to it, unlike CBOW training code, I encountered the error. At first, I used...

Why the shape of Wx is **N** * 4H ? not **D** * 4H?

def eval_seq2seq(model, question, correct, id_to_char, verbos=False, is_reverse=False): 책에서도 verbose라고 써있기도 하고, verbose라고 쓰는게 맞는 것 같아서요

ch08/train.pyでModuleNotFoundErrorが起きます。 ``` Traceback (most recent call last): File "/Users/segavvy/Documents/deep-learning-from-scratch-2/ch08/train.py", line 12, in from ch07.peeky_seq2seq import PeekySeq2seq File "../ch07/peeky_seq2seq.py", line 5, in from seq2seq import Seq2seq, Encoder ModuleNotFoundError: No module named...

old code have ignored the case such as below: ``` y = array([0.88, 0.22, 0.99]) t = array([[1], [0], [1]]) ``` in such case, old `cross_entropy_error` function cannot calculate correctly,...

![image](https://github.com/oreilly-japan/deep-learning-from-scratch-2/assets/13015068/b888434e-6d69-4ac1-a532-af70f8be0026)

common/layersのSoftmaxWithLossの動作についてですが、現状のものでは、 forward(x, t)の引数のx, tが例えば、 x = np.array([[1.0, 1.5, 2.0], [1.2, 1.5, 1.7]]) t = np.array([[0, 0, 1], [0, 1, 0]]) または、 x = np.array([[1.0, 1.5, 2.0], [1.2, 1.5, 1.7]]) t...