mmpose
mmpose copied to clipboard
AssertionError: target_weights and target have mismatched shapes torch.Size([128, 6]) v.s. torch.Size([32, 6, 64, 48])
Prerequisite
- [X] I have searched Issues and Discussions but cannot get the expected help.
- [X] The bug has not been fixed in the latest version(https://github.com/open-mmlab/mmpose).
Environment
mmcv 2.1.0 mmdet 3.3.0 mmengine 0.10.3 mmpose 1.3.1 /home/meng/Desktop/wjl-project/mmpose
Reproduces the problem - code sample
base = ['mmpose::base/default_runtime.py']
runtime
train_cfg = dict(max_epochs=210, val_interval=10)
optimizer
optim_wrapper = dict(optimizer=dict( type='Adam', lr=2e-2, ))
learning policy
param_scheduler = [ dict( type='LinearLR', begin=0, end=500, start_factor=0.001, by_epoch=False), # warm-up dict( type='MultiStepLR', begin=0, end=210, milestones=[170, 190, 200], gamma=0.1, by_epoch=True) ]
automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=256)
hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater'))
codec settings
multiple kernel_sizes of heatmap gaussian for 'Megvii' approach.
kernel_sizes = [11, 9, 7, 5] codec = [ dict( type='MegviiHeatmap', input_size=(192, 256), heatmap_size=(48, 64), kernel_size=kernel_size) for kernel_size in kernel_sizes ]
model settings
model = dict( type='TopdownPoseEstimator', data_preprocessor=dict( type='PoseDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='RSN', unit_channels=256, num_stages=1, num_units=4, num_blocks=[2, 2, 2, 2], num_steps=4, norm_cfg=dict(type='BN'), ), head=dict( type='MSPNHead', out_shape=(64, 48), unit_channels=256, out_channels=6, num_stages=1, num_units=4, norm_cfg=dict(type='BN'), # each sub list is for a stage # and each element in each list is for a unit level_indices=[0, 1, 2, 3], loss=[ dict( type='KeypointMSELoss', use_target_weight=True, loss_weight=0.25) ] * 3 + [ dict( type='KeypointOHKMMSELoss', use_target_weight=True, loss_weight=1.) ], decoder=codec[-1]), test_cfg=dict( flip_test=True, flip_mode='heatmap', shift_heatmap=False, ))
base dataset settings
dataset_type = 'CocoDataset' data_mode = 'topdown' data_root = '/home/meng/Desktop/wjl-project/mmpose/data/Plane_coco/'
pipelines
train_pipeline = [ dict(type='LoadImage'), dict(type='GetBBoxCenterScale'), dict(type='RandomFlip', direction='horizontal'), dict(type='RandomHalfBody'), dict(type='RandomBBoxTransform'), dict(type='TopdownAffine', input_size=codec[0]['input_size']), dict(type='GenerateTarget', multilevel=True, encoder=codec), dict(type='PackPoseInputs') ]
val_pipeline = [ dict(type='LoadImage'), dict(type='GetBBoxCenterScale'), dict(type='TopdownAffine', input_size=codec[0]['input_size']), dict(type='PackPoseInputs') ]
data loaders
train_dataloader = dict( batch_size=32, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, data_mode=data_mode, ann_file='train_coco.json', data_prefix=dict(img='images/'), pipeline=train_pipeline, metainfo=dict(from_file='configs/base/datasets/coco_Plane.py'), )) val_dataloader = dict( batch_size=32, num_workers=4, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), dataset=dict( type=dataset_type, data_root=data_root, data_mode=data_mode, ann_file='val_coco.json', data_prefix=dict(img='images/'), test_mode=True, bbox_file=None, pipeline=val_pipeline, metainfo=dict(from_file='configs/base/datasets/coco_Plane.py'), )) test_dataloader = val_dataloader
evaluators
val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'val_coco.json', nms_mode='none') test_evaluator = val_evaluator
fp16 settings
fp16 = dict(loss_scale='dynamic')
Reproduces the problem - command or script
python tools/train.py /home/meng/Desktop/wjl-project/mmpose/data/td-hm_rsn18_8xb32-210e_coco-256x192.py
Reproduces the problem - error message
Traceback (most recent call last):
File "tools/train.py", line 162, in
Additional information
No response
please help me!
Thank you for bringing this issue to our attention! There seems to be a bug in the MSPNHead, and we will address it promptly. In the meantime, you could try using another model.
Thank you for bringing this issue to our attention! There seems to be a bug in the
MSPNHead, and we will address it promptly. In the meantime, you could try using another model.
thank you! if you address please tell me ! thank you!
If you wish to use RSN, you can modify the code manually by following https://github.com/open-mmlab/mmpose/pull/2993.