mmpose
mmpose copied to clipboard
[Bug] Replace the head of litehrnet with dsnt it enable to run
Prerequisite
- [X] I have searched Issues and Discussions but cannot get the expected help.
- [X] The bug has not been fixed in the latest version(https://github.com/open-mmlab/mmpose).
Environment
OrderedDict([('sys.platform', 'win32'), ('Python', '3.9.12 (main, Apr 4 2022, 05:22:27) [MSC v.1916 64 bit (AMD64)]'), ('CUDA available', False), ('numpy_random_seed', 2147483648), ('MSVC', '用于 x64 的 Misoft (R) C/C++ 优化编译器 19.34.31937 版'), ('GCC', 'n/a'), ('PyTorch', '2.1.1+cpu'), ('PyTorch compiling details', 'PyTorch built with:\n - C++ Version: 199711\n - MSVC 192930151\n - Intel(R) Math Kerneary Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4)\n - OpenMP 2019\n - LAPACK is enabled (usually provided by MKL)\n - CPU capability usage: AVX512\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CXX_COMPILER=C:/actions-runner/_work/pytorch/pytorch/builder/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /bigobj /FS -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /utf-8 /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=OFF, TORCH_VERSION=2.1.1, USE_CUDA=0, USE_CUDNN=OFF, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF, \n'), ('TorchVision', '0.16.1+cpu'), ('OpenCV', '4.8.1'), ('MMEngine', '0.7.3'), ('MMPose', '1.2.0+6d10b2e')])
Package Version
absl-py 2.0.0 addict 2.4.0 alabaster 0.7.13 albumentations 1.3.1 appdirs 1.4.4 attrs 23.1.0 Babel 2.13.1 cachetools 5.3.2 certifi 2023.11.17 cffi 1.16.0 charset-normalizer 3.3.2 chumpy 0.70 cityscapesScripts 2.2.2 click 8.1.7 colorama 0.4.6 coloredlogs 15.0.1 commonmark 0.9.1 contourpy 1.2.0 coverage 7.3.2 cycler 0.12.1 Cython 3.0.3 docutils 0.18.1 e2cnn 0.2.3 easydict 1.7 exceptiongroup 1.2.0 fairscale 0.4.13 filelock 3.12.4 flake8 6.1.0 flatbuffers 23.5.26 fonttools 4.45.0 fsspec 2023.9.2 future 0.18.3 google-auth 2.23.4 google-auth-oauthlib 1.1.0 grpcio 1.59.3 humanfriendly 10.0 idna 3.4 imagecorruptions 1.1.2 imageio 2.31.5 imagesize 1.4.1 importlib-metadata 6.8.0 importlib-resources 6.1.1 iniconfig 2.0.0 interrogate 1.5.0 isort 4.3.21 Jinja2 3.1.2 joblib 1.3.2 json-tricks 3.17.3 kiwisolver 1.4.5 lazy_loader 0.3 Markdown 3.5.1 markdown-it-py 3.0.0 MarkupSafe 2.1.3 matplotlib 3.8.2 mccabe 0.7.0 mdurl 0.1.2 mmcv 2.1.0 mmengine 0.7.3 mmpose 1.2.0 mmrotate 1.0.0rc1 mpmath 1.3.0 munkres 1.1.4 networkx 3.1 numpy 1.26.0 oauthlib 3.2.2 onnx 1.15.0 onnxruntime 1.16.3 opencv-python 4.8.1.78 opencv-python-headless 4.8.1.78 packaging 23.2 pandas 2.1.1 parameterized 0.9.0 pi 0.1.2 Pillow 10.0.1 pip 23.3.1 platformdirs 4.0.0 pluggy 1.3.0 protobuf 4.23.4 py 1.11.0 pyasn1 0.5.1 pyasn1-modules 0.3.0 pycocotools 2.0.7 pycodestyle 2.11.1 pycparser 2.21 pyflakes 3.1.0 Pygments 2.17.1 pyparsing 3.1.1 pyquaternion 0.9.9 pyreadline3 3.4.1 pytest 7.4.3 pytest-runner 6.0.0 python-dateutil 2.8.2 pytz 2023.3.post1 PyYAML 6.0.1 qudida 0.0.4 recommonmark 0.7.1 regex 2023.10.3 requests 2.31.0 requests-oauthlib 1.3.1 rich 13.7.0 rsa 4.9 scikit-image 0.22.0 scikit-learn 1.3.2 scipy 1.11.3 setuptools 60.2.0 shapely 2.0.2 six 1.16.0 smplx 0.1.28 snowballstemmer 2.2.0 Sphinx 7.2.6 sphinx-markdown-tables 0.0.17 sphinx-rtd-theme 1.3.0 sphinxcontrib-applehelp 1.0.7 sphinxcontrib-devhelp 1.0.5 sphinxcontrib-htmlhelp 2.0.4 sphinxcontrib-jquery 4.1 sphinxcontrib-jsmath 1.0.1 sphinxcontrib-qthelp 1.0.6 sphinxcontrib-serializinghtml 1.1.9 sympy 1.12 tabulate 0.9.0 tensorboard 2.15.1 tensorboard-data-server 0.7.2 tensorboardX 2.6.2.2 termcolor 2.3.0 terminaltables 3.1.10 threadpoolctl 3.2.0 tifffile 2023.9.26 titlecase 2.4.1 toml 0.10.2 tomli 2.0.1 torch 2.1.1 torchvision 0.16.1 tqdm 4.66.1 typing 3.7.4.3 typing_extensions 4.8.0 tzdata 2023.3 urllib3 2.1.0 Werkzeug 3.0.1 wheel 0.37.1 xdoctest 1.1.2 xtcocotools 1.14.3 yacs 0.1.8 yapf 0.40.1 zipp 3.17.0
Reproduces the problem - code sample
base = ['../../../base/default_runtime.py']
runtime
train_cfg = dict(max_epochs=210, val_interval=10)
optimizer
optim_wrapper = dict(optimizer=dict( type='Adam', lr=5e-4, ))
learning policy
param_scheduler = [ dict( type='LinearLR', begin=0, end=500, start_factor=0.001, by_epoch=False), # warm-up dict( type='MultiStepLR', begin=0, end=210, milestones=[170, 200], gamma=0.1, by_epoch=True) ]
automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=512)
hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater'))
codec settings
codec = dict( type='IntegralRegressionLabel', input_size=(256, 256), heatmap_size=(64, 64), sigma=2.0, normalize=True)
model settings
model = dict( type='TopdownPoseEstimator', data_preprocessor=dict( type='PoseDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='LiteHRNet', in_channels=3, extra=dict( stem=dict(stem_channels=32, out_channels=32, expand_ratio=1), num_stages=3, stages_spec=dict( num_modules=(2, 4, 2), num_branches=(2, 3, 4), num_blocks=(2, 2, 2), module_type=('LITE', 'LITE', 'LITE'), with_fuse=(True, True, True), reduce_ratios=(8, 8, 8), num_channels=( (40, 80), (40, 80, 160), (40, 80, 160, 320), )), with_head=True, )), head=dict( type='DSNTHead', in_channels=40, in_featuremap_size=(8, 8), num_joints=17, loss=dict( type='MultipleLossWrapper', losses=[ dict(type='SmoothL1Loss', use_target_weight=True), dict(type='JSDiscretLoss', use_target_weight=True) ]), decoder=codec), test_cfg=dict( flip_test=True, shift_coords=True, shift_heatmap=True,
),
# init_cfg=dict(
# type='Pretrained',
# checkpoint='https://download.openmmlab.com/mmpose/'
# 'pretrain_models/td-hm_res50_8xb64-210e_coco-256x192.pth')
)
base dataset settings
dataset_type = 'CocoDataset' data_mode = 'topdown' data_root = 'data/coco/'
pipelines
train_pipeline = [ dict(type='LoadImage'), dict(type='GetBBoxCenterScale'), dict(type='RandomFlip', direction='horizontal'), dict(type='RandomHalfBody'), dict(type='RandomBBoxTransform'), dict(type='TopdownAffine', input_size=codec['input_size']), dict(type='GenerateTarget', encoder=codec), dict(type='PackPoseInputs') ] test_pipeline = [ dict(type='LoadImage'), dict(type='GetBBoxCenterScale'), dict(type='TopdownAffine', input_size=codec['input_size']), dict(type='PackPoseInputs') ]
data loaders
train_dataloader = dict( batch_size=16, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, data_mode=data_mode, ann_file='annotations/person_keypoints_train2017.json', data_prefix=dict(img='train2017/'), pipeline=train_pipeline, )) val_dataloader = dict( batch_size=32, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), dataset=dict( type=dataset_type, data_root=data_root, data_mode=data_mode, ann_file='annotations/person_keypoints_val2017.json', bbox_file=f'{data_root}person_detection_results/' 'COCO_val2017_detections_AP_H_56_person.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline, )) test_dataloader = val_dataloader
hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater'))
evaluators
val_evaluator = dict( type='CocoMetric', ann_file=f'{data_root}annotations/person_keypoints_val2017.json') test_evaluator = val_evaluator
Reproduces the problem - command or script
python tools/train.py D:\mmpose\configs\body_2d_keypoint\integral_regression\coco\ipr_litehrnet-18_dsnt-8xb64-210e_coco-256x192.py
Reproduces the problem - error message
Traceback (most recent call last):
File "D:\mmpose\tools\train.py", line 162, in
Additional information
No response
Please check whether the argument in_featuremap_size is compatible with the output feature maps from litehrnet