mmpose
mmpose copied to clipboard
How to train hrnet_w48 with DeepposeRegression process
Dear,
I am now trying to fine-tune model of 2d hand pose. However, I found that mmpose didn't train too much deeppose 2d hand pose.
I want to use Hrnet_W48 to train in the deeppose regression way.
I modify the configure of mmpose\configs\wholebody\2d_kpt_sview_rgb_img\topdown_heatmap\coco-wholebody\hrnet_w48_coco_wholebody_384x288_dark_plus.py
What i have done is :
- I modify the
modeldict with adding theneckand change thekeypoint_headandtest_cfg - I modify the train_pipeline with
dict(type='TopDownGenerateTarget')-->dict(type='TopDownGenerateTargetRegression')
My modified config is as below:
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/coco_wholebody_hand.py'
]
# use the pre-trained model
evaluation = dict(interval=10, metric=['PCK', 'AUC', 'EPE'], save_best='AUC')
optimizer = dict(
type='Adam',
lr=1e-3, #5e-4
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 30 #210
log_config = dict(
interval=10,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
num_output_channels=21,
dataset_joints=21,
dataset_channel=[
[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20
],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20
])
# model settings
model = dict(
type='TopDown',
pretrained=None,
backbone=dict(
type='HRNet',
in_channels=3,
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(48, 96)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(48, 96, 192)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(48, 96, 192, 384))),
),
neck=dict(type='GlobalAveragePooling'),
keypoint_head=dict(
type='DeepposeRegressionHead',
in_channels=2048,
num_joints=channel_cfg['num_output_channels'],
loss_keypoint=dict(type='SmoothL1Loss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[256, 256],
heatmap_size=[64, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'])
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(type='TopDownRandomResize', size_range=[64, 128], resize_prob=0.3), # Perform random resize
dict(type='TopDownRandomBlur', kernel_size=5, blur_prob=0.5), # Perform random blur
dict(
type='TopDownGetRandomScaleRotation', rot_factor=90, scale_factor=0.3),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTargetRegression'),
# dict(type='TopDownGenerateTarget', sigma=2, unbiased_encoding=True),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=['image_file', 'center', 'scale', 'rotation', 'flip_pairs']),
]
test_pipeline = val_pipeline
data_root = ['/data/public_data/pose/hand2d/coco']
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=[
dict(
type='HandCocoWholeBodyDataset',
ann_file=f'{data_root[0]}/annotations/coco_wholebody_train_v1.0.json',
img_prefix=f'{data_root[0]}/train2017/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}
)
],
val=dict(
type='HandCocoWholeBodyDataset',
ann_file=f'{data_root[0]}/annotations/coco_wholebody_val_v1.0.json',
img_prefix=f'{data_root[0]}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}
),
test=dict(
type='HandCocoWholeBodyDataset',
ann_file=f'{data_root[0]}/annotations/coco_wholebody_val_v1.0.json',
img_prefix=f'{data_root[0]}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}
),
)
ps: actually I am quite familiar with the structure of hrnet and the difference between deeppose processing and heatmap processing. So what i try to do is mimic the config of both of them. I have no idea that those exact meaning in code. Grateful for your help!
Your steps are correct. Are you able to train the model with the modified config?