dfogn
dfogn copied to clipboard
DFO-GN: Derivative-Free Optimization using Gauss-Newton
====================================================== DFO-GN: Derivative-Free Nonlinear Least-Squares Solver
.. image:: https://travis-ci.org/numericalalgorithmsgroup/dfogn.svg?branch=master :target: https://travis-ci.org/numericalalgorithmsgroup/dfogn :alt: Build Status
.. image:: https://img.shields.io/badge/License-GPL%20v3-blue.svg :target: https://www.gnu.org/licenses/gpl-3.0 :alt: GNU GPL v3 License
.. image:: https://img.shields.io/pypi/v/DFOGN.svg :target: https://pypi.python.org/pypi/DFOGN :alt: Latest PyPI version
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.2629875.svg :target: https://doi.org/10.5281/zenodo.2629875 :alt: DOI:10.5281/zenodo.2629875
DFO-GN is a package for solving nonlinear least-squares minimisation, without requiring derivatives of the objective.
This is an implementation of the algorithm from our paper:
A Derivative-Free Gauss-Newton Method <https://doi.org/10.1007/s12532-019-00161-7>, C. Cartis and L. Roberts, Mathematical Programming Computation (2019). For reproducibility of all figures in this paper, please feel free to contact the authors. A preprint of the paper is available here <https://arxiv.org/abs/1710.11005>.
Note: we have released a newer package, called DFO-LS, which is an upgrade of DFO-GN to improve its flexibility and robustness to noisy problems. See here <https://github.com/numericalalgorithmsgroup/dfols>_ for details.
Citation To cite DFO-GN, please use :: @Article{DFOGN, Title = {A derivative-free {G}auss-{N}ewton method}, Author = {Cartis, Coralia and Roberts, Lindon}, Journal = {Mathematical Programming Computation}, Year = {2019}, Doi = {10.1007/s12532-019-00161-7}, Url = {https://doi.org/10.1007/s12532-019-00161-7} }
Documentation
See manual.pdf or here <https://numericalalgorithmsgroup.github.io/dfogn/>_.
Requirements
DFO-GN requires the following software to be installed:
Python 2.7 or Python 3 <http://www.python.org/>_
Additionally, the following python packages should be installed (these will be installed automatically if using pip <http://www.pip-installer.org/>, see Installation using pip):
NumPy 1.11 or higher <http://www.numpy.org/>_SciPy 0.18 or higher <http://www.scipy.org/>_
Installation using pip
For easy installation, use pip <http://www.pip-installer.org/>_ as root:
.. code-block:: bash
$ [sudo] pip install --pre dfogn
If you do not have root privileges or you want to install DFO-GN for your private use, you can use:
.. code-block:: bash
$ pip install --pre --user dfogn
which will install DFO-GN in your home directory.
Note that if an older install of DFO-GN is present on your system you can use:
.. code-block:: bash
$ [sudo] pip install --pre --upgrade dfogn
to upgrade DFO-GN to the latest version.
Manual installation
The source code for DFO-GN is available on Github <https://https://github.com/numericalalgorithmsgroup/dfogn>_:
.. code-block:: bash
$ git clone https://github.com/numericalalgorithmsgroup/dfogn
$ cd dfogn
DFO-GN is written in pure Python and requires no compilation. It can be installed using:
.. code-block:: bash
$ [sudo] pip install --pre .
If you do not have root privileges or you want to install DFO-GN for your private use, you can use:
.. code-block:: bash
$ pip install --pre --user .
instead.
Testing
If you installed DFO-GN manually, you can test your installation by running:
.. code-block:: bash
$ python setup.py test
Alternatively, the documentation <https://numericalalgorithmsgroup.github.io/dfogn/>_ provides some simple examples of how to run DFO-GN, which are also available in the examples directory.