Pytorch-UNet
Pytorch-UNet copied to clipboard
predict.py - i image.jpg - o output.jpg code; 输出图片却是一张纯黑的图片。
Run the Python predict.py - i image.jpg - o output.jpg code; There is a problem now, which is importing the image I want to test, but the output image is a pure black image. I hope someone can give me some g
uidance!
Hello, have you resolved it. I would like to ask for advice.
emmm, mask图后面要加_mask后缀,或者修改utils/data_loading.py中的CarvanaDataset,把mask_suffix设为空
you may change the function as
def mask_to_image(mask: np.ndarray, mask_values):
if isinstance(mask_values[0], list):
out = np.zeros(
(mask.shape[-2], mask.shape[-1], len(mask_values[0])), dtype=np.uint8
)
elif mask_values == [0, 1]:
out = np.zeros((mask.shape[-2], mask.shape[-1]), dtype=bool)
else:
# out = np.zeros((mask.shape[-2], mask.shape[-1]), dtype=np.uint8)
out = np.zeros((mask.shape[-2], mask.shape[-1], 3), dtype=np.uint8)
print(mask.shape)
if mask.ndim == 3:
mask = np.argmax(mask, axis=0)
if mask_values == [0, 1]:
for i, v in enumerate(mask_values):
out[mask == i] = v
return Image.fromarray(out)
else:
for i, _ in enumerate(mask_values):
out[mask == i] = list(np.random.choice(range(256), size=3))
return Image.fromarray(out, "RGB")
Note that if you would like to have a desired color list, instead of using random as shown in the example. Just define your color list to replace list(np.random.choice(range(256), size=3))
emmm, mask图后面要加_mask后缀,或者修改utils/data_loading.py中的CarvanaDataset,把mask_suffix设为空
改了没用啊?
@seeyouwlx Hello, have you resolved it?
emmm, mask图后面要加_mask后缀,或者修改utils/data_loading.py中的CarvanaDataset,把mask_suffix设为空
改了没用啊?
加了之后需要重新训练
