Semi-supervised-learning
Semi-supervised-learning copied to clipboard
AttributeError: 'DistributedSampler' object has no attribute 'num_samples'
AttributeError Traceback (most recent call last)
1 frames
/content/drive/MyDrive/RUPESH_RESEARCH_IMPLEMENTATIONS/Semi-supervised-learning/semilearn/datasets/utils.py in get_data_loader(args, dset, batch_size, shuffle, num_workers, pin_memory, data_sampler, num_epochs, num_iters, generator, drop_last, distributed) 161 num_samples = per_epoch_steps * batch_size * num_replicas 162 # print(num_samples) --> 163 return DataLoader(dset, batch_size=batch_size, shuffle=False, num_workers=num_workers, collate_fn=collact_fn,pin_memory=pin_memory, sampler=data_sampler(dset, num_replicas=num_replicas, rank=rank, num_samples=num_samples), 164 generator=generator, drop_last=drop_last) 165
/content/drive/MyDrive/RUPESH_RESEARCH_IMPLEMENTATIONS/Semi-supervised-learning/semilearn/datasets/samplers/sampler.py in init(self, dataset, num_replicas, rank, num_samples) 29 def init(self, dataset, num_replicas=None, rank=None, num_samples=None): 30 if not isinstance(num_samples, int) or num_samples <= 0: ---> 31 raise ValueError("num_samples should be a positive integeral value, but got num_samples={}".format(self.num_samples)) 32 33 if num_replicas is None:
AttributeError: 'DistributedSampler' object has no attribute 'num_samples'
Any suggestions on how to solve this issue?