🌇🌆 Hyperspectral Image Fusion Benchmarking 🏙🌃
Comparison of the multispectral (MS) and hyperspectral (HS) image fusion techniques used for the spatial resolution enhancement of HS images.

Existing hyperspectral imaging systems produce images that lack spatial resolution due to hardware limitations. Even with the proven efficacy of this technology in several computer vision tasks, the aforementioned limitation obstructs its applicability. Contrarily, conventional RGB images have a much larger resolution with just three spectra. Since the issue of low resolution images arises from hardware limitations, there have been several developments in software-based approaches to improve the spatial resolution of hyperspectral images.
This work allows for an easy-to-use framework for testing and comparing existing hyperspectral image fusion (HIF) methods for spatial resolution enhancement.
Content
- Citation
- Instructions
- Datasets
- Methods
- Implemented Methods
- Other Methods
- Extensions
- Metrics
- Requirements
Citation
If you use any part of this work, please use the following citation:
Magalhães, Miguel. “Hyperspectral Image Fusion: A Comprehensive Review”. Master’s Programme in Imaging and Light in Extended Reality (IMLEX). MSc. thesis. KU Leuven, 2022.
@mastersthesis{hif_review_2022,
title={Hyperspectral Image Fusion: A Comprehensive Review},
author={Miguel Magalhães},
year={2022},
school={KU Leuven},
note={Master’s Programme in Imaging and Light in Extended Reality (IMLEX)}
}
Instructions
Download and process dataset(s) (e.g.: CAVE, Harvard). This will also create MS image and downsampled HS image by a factor of 4, 8 and 16 (or any other power of 2 that you add as input to the script):
python main/dataset_CAVE.py
Run all algorithms over the datasets (you can edit run.py to customize the combinatory that you wish to process in terms of datasets, methods and scaling factors):
python main/run.py
Finally, compute the metrics that compare the output of the image fusion methods with the ground truth data:
python main/metrics.py
Datasets
Compilation of publically available hyperspectral datasets. The datasets in bold can be automatically downloaded and processed using the respective script main/dataset_{name}.py as per the instructions above.
| Dataset |
Year |
Qty |
Resolution* |
Download |
Paper |
| CAVE |
2008 |
32 |
512x512x31 [400,700]nm |
All |
Yasuma, F., Mitsunaga, T., Iso, D., & Nayar, S. K. (2010). Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE transactions on image processing, 19(9), 2241-2253. |
| Harvard |
2011 |
77 |
1040x1392x31 [420,720]nm |
All |
Chakrabarti, A., & Zickler, T. (2011, June). Statistics of real-world hyperspectral images. In CVPR 2011 (pp. 193-200). IEEE. |
| NUS** |
2014 |
88 |
?×?x31 [400,700]nm |
- |
Nguyen, R. M., Prasad, D. K., & Brown, M. S. (2014, September). Training-based spectral reconstruction from a single RGB image. In European Conference on Computer Vision (pp. 186-201). Springer, Cham. |
| iCVL** |
2016 |
201 |
1392×1300x519 [400,1000]nm |
All |
Arad, B., & Ben-Shahar, O. (2016, October). Sparse recovery of hyperspectral signal from natural RGB images. In European Conference on Computer Vision (pp. 19-34). Springer, Cham. |
As a demo image, we include the hyperspectral measurement of a resolution chart (ISO 12233:2017 Edge eSFR Inkjet chart) with a resolution of 512x512x108 and a wavelength interval from 403.09nm to 717.54nm, measured with a Specim IQ camera.

Additionally, remote sensing hyperspectral scenes are also available and widely used accross the field.
Click to show list of Hyperspectral Remote Sensing Scenes
Below, we list the publically available hyperspectral remote sensing scenes. The ones in italic were collected by the GIC from EHU, and can be downloaded using main/_dataset_EHU.py, the processing part to generate the MS and downsampled HS images is still missing.
| Dataset |
Year |
Qty |
Resolution* |
Download |
Paper |
| Indian Pines |
1992 |
1 |
145x145x220 [400,2500]nm*** |
URL |
Baumgardner, M. F., Biehl, L. L., & Landgrebe, D. A. (2015). 220 band aviris hyperspectral image data set: June 12, 1992 indian pine test site 3. Purdue University Research Repository, 10, R7RX991C. / AVIRIS NASA. |
| Kennedy Space Center |
1996 |
1 |
512x614x176 [400,2500]nm*** |
URL |
AVIRIS NASA. Information about removed bands unavailable. |
| Salinas |
1998 |
1 |
512x217x224 [400,2500]nm*** |
Full Subscene |
AVIRIS NASA. |
| Cuprite |
1998 |
1 |
512x614x224 [400,2500]nm*** |
URL |
AVIRIS NASA. |
| Botswana |
2001 |
1 |
1476x256x145 [400,2500]nm*** |
URL |
AVIRIS NASA. Information about removed bands is incorrect. |
| Pavia |
2008 |
2 |
?x?x103 [430,860]nm |
Centre University |
Dataset provided by Prof. Paolo Gamba from the Telecommunications and Remote Sensing Laboratory, Pavia university (Italy). |
| Chikusei** |
2016 |
1 |
2517x2335x128 [363,1018]nm |
URL |
Yokoya, N., & Iwasaki, A. (2016). Airborne hyperspectral data over Chikusei. Space Appl. Lab., Univ. Tokyo, Tokyo, Japan, Tech. Rep. SAL-2016-05-27. |
| WHU-Hi** |
2020 |
3 |
varies |
All |
Zhong, Y., Hu, X., Luo, C., Wang, X., Zhao, J., & Zhang, L. (2020). WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sensing of Environment, 250, 112012. |
Further remote sensing scenes can be found at rslab.ut.ac.ir/data.
* the first line represents the size of the spectral cubes (width x height x spectral bands), and the second line the wavelength interval of the dataset.
** script for automatic download and processing not implemented yet.
*** some bands in between were removed.
Methods
Hyperspectral image fusion (HIF) methods with code publicly available.
Implemented Methods
Methods with code available together with an implemented wrapper in this repository (some of the wrappers are adapted from "Hyperspectral and Multispectral Data Fusion: A Comparative Review" [^1]).
| Method |
Year |
Code |
Paper |
| SFIM* |
2000 |
Matlab |
Liu, J. G. (2000). Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing, 21(18), 3461-3472. |
| MAPSMM |
2004 |
Matlab |
Eismann, M. T. (2004). Resolution enhancement of hyperspectral imagery using maximum a posteriori estimation with a stochastic mixing model. University of Dayton. |
| GLP* |
2006 |
Matlab |
Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A., & Selva, M. (2006). MTF-tailored multiscale fusion of high-resolution MS and Pan imagery. Photogrammetric Engineering & Remote Sensing, 72(5), 591-596. |
| GSA |
2007 |
Matlab |
Aiazzi, B., Baronti, S., & Selva, M. (2007). Improving component substitution pansharpening through multivariate regression of MS +Pan data. IEEE Transactions on Geoscience and Remote Sensing, 45(10), 3230-3239. |
| CNMF |
2011 |
Python Matlab |
Yokoya, N., Yairi, T., & Iwasaki, A. (2011, July). Coupled non-negative matrix factorization (CNMF) for hyperspectral and multispectral data fusion: Application to pasture classification. In 2011 IEEE International Geoscience and Remote Sensing Symposium (pp. 1779-1782). IEEE. |
| GSOMP |
2014 |
Matlab |
Akhtar, N., Shafait, F., & Mian, A. (2014, September). Sparse spatio-spectral representation for hyperspectral image super-resolution. In European conference on computer vision (pp. 63-78). Springer, Cham. |
| HySure |
2014 |
Matlab |
Simoes, M., Bioucas-Dias, J., Almeida, L. B., & Chanussot, J. (2014, October). Hyperspectral image superresolution: An edge-preserving convex formulation.Hysure In 2014 IEEE International Conference on Image Processing (ICIP) (pp. 4166-4170). IEEE. |
| BayesianSparse (very slow) |
2015 |
Matlab |
Akhtar, N., Shafait, F., & Mian, A. (2015). Bayesian sparse representation for hyperspectral image super resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3631-3640). |
| FUSE |
2015 |
Matlab |
Wei, Q., Dobigeon, N., & Tourneret, J. Y. (2015). Bayesian fusion of multi-band images. IEEE Journal of Selected Topics in Signal Processing, 9(6), 1117-1127. |
| SupResPALM |
2015 |
Matlab |
Lanaras, C., Baltsavias, E., & Schindler, K. (2015). Hyperspectral super-resolution by coupled spectral unmixing. In Proceedings of the IEEE international conference on computer vision (pp. 3586-3594). |
| NSSR |
2016 |
Matlab |
Dong, W., Fu, F., Shi, G., Cao, X., Wu, J., Li, G., & Li, X. (2016). Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Transactions on Image Processing, 25(5), 2337-2352. |
| CNN-FUS |
2018 |
Matlab |
Dian, R., Li, S., & Kang, X. (2020). Regularizing hyperspectral and multispectral image fusion by CNN denoiser. IEEE transactions on neural networks and learning systems, 32(3), 1124-1135. |
| CSTF (unstable) |
2018 |
Matlab |
Li, S., Dian, R., Fang, L., & Bioucas-Dias, J. M. (2018). Fusing hyperspectral and multispectral images via coupled sparse tensor factorization. IEEE Transactions on Image Processing, 27(8), 4118-4130. |
| LTMR |
2019 |
Matlab |
Dian, R., & Li, S. (2019). Hyperspectral image super-resolution via subspace-based low tensor multi-rank regularization. IEEE Transactions on Image Processing, 28(10), 5135-5146. |
| LTTR |
2019 |
Matlab |
Dian, R., Li, S., & Fang, L. (2019). Learning a low tensor-train rank representation for hyperspectral image super-resolution. IEEE transactions on neural networks and learning systems, 30(9), 2672-2683. |
* pan-sharpening methods adapted to HS–MS fusion [^1] via hypersharpening [^2].
Other Methods
Code is available but wrapper is not implemented yet.
| Method |
Year |
Code |
Paper |
| MF |
2011 |
Matlab |
Kawakami, R., Matsushita, Y., Wright, J., Ben-Ezra, M., Tai, Y. W., & Ikeuchi, K. (2011, June). High-resolution hyperspectral imaging via matrix factorization. In CVPR 2011 (pp. 2329-2336). IEEE. |
| SNMF |
2013 |
Matlab |
Wycoff, E., Chan, T. H., Jia, K., Ma, W. K., & Ma, Y. (2013, May). A non-negative sparse promoting algorithm for high resolution hyperspectral imaging. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1409-1413). IEEE. |
| BSR |
2015 |
Matlab |
Wei, Q., Bioucas-Dias, J., Dobigeon, N., & Tourneret, J. Y. (2015). Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 3658-3668. |
| BlindFuse |
2016 |
Matlab |
Wei, Q., Bioucas-Dias, J., Dobigeon, N., Tourneret, J. Y., & Godsill, S. (2016, September). Blind model-based fusion of multi-band and panchromatic images. In 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) (pp. 21-25). IEEE. |
| FUMI |
2016 |
Matlab |
Wei, Q., Bioucas-Dias, J., Dobigeon, N., Tourneret, J. Y., Chen, M., & Godsill, S. (2016). Multiband image fusion based on spectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 7236-7249. |
| MSDCNN * |
2017 |
Python |
Yuan, Q., Wei, Y., Meng, X., Shen, H., & Zhang, L. (2018). A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(3), 978-989. |
| BRS |
2018 |
Matlab |
Bungert, L., Coomes, D. A., Ehrhardt, M. J., Rasch, J., Reisenhofer, R., & Schönlieb, C. B. (2018). Blind image fusion for hyperspectral imaging with the directional total variation. Inverse Problems, 34(4), 044003. |
| CMS |
2018 |
Matlab |
Zhang, L., Wei, W., Bai, C., Gao, Y., & Zhang, Y. (2018). Exploiting clustering manifold structure for hyperspectral imagery super-resolution. IEEE Transactions on Image Processing, 27(12), 5969-5982. |
| DHSIS |
2018 |
Python |
Dian, R., Li, S., Guo, A., & Fang, L. (2018). Deep hyperspectral image sharpening. IEEE transactions on neural networks and learning systems, 29(11), 5345-5355. |
| SSF-CNN & PDCon-SSF * |
2018 |
Python |
Han, X. H., Shi, B., & Zheng, Y. (2018, October). SSF-CNN: Spatial and spectral fusion with CNN for hyperspectral image super-resolution. In 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 2506-2510). IEEE. |
| STEREO |
2018 |
Matlab |
Kanatsoulis, C. I., Fu, X., Sidiropoulos, N. D., & Ma, W. K. (2018). Hyperspectral super-resolution: A coupled tensor factorization approach. IEEE Transactions on Signal Processing, 66(24), 6503-6517. |
| uSDN |
2018 |
Python |
Qu, Y., Qi, H., & Kwan, C. (2018). Unsupervised sparse dirichlet-net for hyperspectral image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2511-2520). |
| DBIN |
2019 |
Python |
Wang, W., Zeng, W., Huang, Y., Ding, X., & Paisley, J. (2019). Deep blind hyperspectral image fusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 4150-4159). |
| CUCaNet |
2020 |
Python |
Yao, J., Hong, D., Chanussot, J., Meng, D., Zhu, X., & Xu, Z. (2020, August). Cross-attention in coupled unmixing nets for unsupervised hyperspectral super-resolution. In European Conference on Computer Vision (pp. 208-224). Springer, Cham. |
| GDD |
2020 |
Python |
Uezato, T., Hong, D., Yokoya, N., & He, W. (2020, August). Guided deep decoder: Unsupervised image pair fusion. In European Conference on Computer Vision (pp. 87-102). Springer, Cham. |
| TFNet & ResTFNet * |
2020 |
Python |
Liu, X., Liu, Q., & Wang, Y. (2020). Remote sensing image fusion based on two-stream fusion network. Information Fusion, 55, 1-15. |
| MHF-net |
2020 |
Python |
Xie, Q., Zhou, M., Zhao, Q., Xu, Z., & Meng, D. (2020). MHF-net: An interpretable deep network for multispectral and hyperspectral image fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence. |
| PZRes-Net |
2020 |
Python |
Zhu, Z., Hou, J., Chen, J., Zeng, H., & Zhou, J. (2020). Hyperspectral image super-resolution via deep progressive zero-centric residual learning. IEEE Transactions on Image Processing, 30, 1423-1438. |
| RecHSISR |
2020 |
Python |
Wei, W., Nie, J., Zhang, L., & Zhang, Y. (2020). Unsupervised recurrent hyperspectral imagery super-resolution using pixel-aware refinement. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15. |
| SSRNET |
2020 |
Python |
Zhang, X., Huang, W., Wang, Q., & Li, X. (2020). SSR-NET: Spatial–spectral reconstruction network for hyperspectral and multispectral image fusion. IEEE Transactions on Geoscience and Remote Sensing, 59(7), 5953-5965. |
| TONWMD |
2020 |
Python |
Shen, D., Liu, J., Xiao, Z., Yang, J., & Xiao, L. (2020). A twice optimizing net with matrix decomposition for hyperspectral and multispectral image fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4095-4110. |
| Two-CNN |
2020 |
Matlab |
Yang, J., Zhao, Y. Q., & Chan, J. C. W. (2018). Hyperspectral and multispectral image fusion via deep two-branches convolutional neural network. Remote Sensing, 10(5), 800. |
| UAL |
2020 |
Python |
Zhang, L., Nie, J., Wei, W., Zhang, Y., Liao, S., & Shao, L. (2020). Unsupervised adaptation learning for hyperspectral imagery super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3073-3082). |
| ADMM-HFNET |
2021 |
Python |
Shen, D., Liu, J., Wu, Z., Yang, J., & Xiao, L. (2021). ADMM-HFNet: A Matrix Decomposition-Based Deep Approach for Hyperspectral Image Fusion. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17. |
| Fusformer |
2021 |
Python |
Hu, J. F., Huang, T. Z., & Deng, L. J. (2021). Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution. arXiv preprint arXiv:2109.02079. |
| MoG-DCN |
2021 |
Python |
Dong, W., Zhou, C., Wu, F., Wu, J., Shi, G., & Li, X. (2021). Model-guided deep hyperspectral image super-resolution. IEEE Transactions on Image Processing, 30, 5754-5768. |
| HyperFusion |
2021 |
Python |
Tian, X., Zhang, W., Chen, Y., Wang, Z., & Ma, J. (2021). Hyperfusion: A computational approach for hyperspectral, multispectral, and panchromatic image fusion. IEEE Transactions on Geoscience and Remote Sensing. |
| HSRnet |
2021 |
Python |
Dong, W., Zhou, C., Wu, F., Wu, J., Shi, G., & Li, X. (2021). Model-guided deep hyperspectral image super-resolution. IEEE Transactions on Image Processing, 30, 5754-5768. |
| TSFN |
2021 |
Python |
Wang, X., Chen, J., Wei, Q., & Richard, C. (2021). Hyperspectral Image Super-Resolution via Deep Prior Regularization with Parameter Estimation. IEEE Transactions on Circuits and Systems for Video Technology. |
| u2MDN |
2021 |
Python |
Qu, Y., Qi, H., Kwan, C., Yokoya, N., & Chanussot, J. (2021). Unsupervised and unregistered hyperspectral image super-resolution with mutual Dirichlet-Net. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-18. |
| DBSR |
2022 |
Python |
Zhang, L., Nie, J., Wei, W., Li, Y., & Zhang, Y. (2020). Deep blind hyperspectral image super-resolution. IEEE Transactions on Neural Networks and Learning Systems, 32(6), 2388-2400. |
| DHIF |
2022 |
Python |
Huang, T., Dong, W., Wu, J., Li, L., Li, X., & Shi, G. (2022). Deep Hyperspectral Image Fusion Network With Iterative Spatio-Spectral Regularization. IEEE Transactions on Computational Imaging, 8, 201-214. |
| HSI-CSR |
2022 |
Caffe |
Fu, Y., Zhang, T., Zheng, Y., Zhang, D., & Huang, H. (2019). Hyperspectral image super-resolution with optimized RGB guidance. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11661-11670). |
| RGBaux |
2022 |
Python |
Li, K., Dai, D., & Van Gool, L. (2022). Hyperspectral Image Super-Resolution with RGB Image Super-Resolution as an Auxiliary Task. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 3193-3202). |
| MIAE |
2022 |
Python |
Liu, J., Wu, Z., Xiao, L., & Wu, X. J. (2022). Model Inspired Autoencoder for Unsupervised Hyperspectral Image Super-Resolution. IEEE Transactions on Geoscience and Remote Sensing. |
| NonRegSRNet |
2022 |
Python |
Zheng, K., Gao, L., Hong, D., Zhang, B., & Chanussot, J. (2021). NonRegSRNet: A Nonrigid Registration Hyperspectral Super-Resolution Network. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16. |
| RAFnet |
2022 |
Python |
Lu, R., Chen, B., Cheng, Z., & Wang, P. (2020). RAFnet: Recurrent attention fusion network of hyperspectral and multispectral images. Signal Processing, 177, 107737. |
| SpfNet |
2022 |
Python |
Liu, J., Shen, D., Wu, Z., Xiao, L., Sun, J., & Yan, H. (2022). Patch-Aware Deep Hyperspectral and Multispectral Image Fusion by Unfolding Subspace-Based Optimization Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. |
| UDALN |
2022 |
Python |
Li, J., Zheng, K., Yao, J., Gao, L., & Hong, D. (2022). Deep Unsupervised Blind Hyperspectral and Multispectral Data Fusion. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. |
* code available in another repo (from a different paper)
Extensions
Extensions of HSI methods with publicly available code. These should be regarded as extensions to the base pipelines and not as a separate methods. These take as input a super-resolution image (output of the HSI method) together with the MS and HS images (original HSI method input); and provide as input an improved super-resolution image. The wrappers for these extensions are not implemented in this repository yet.

| Method |
Year |
Code |
Paper |
| TVTVHS |
2021 |
Python |
Vella, M., Zhang, B., Chen, W., & Mota, J. F. (2021, September). Enhanced Hyperspectral Image Super-Resolution via RGB Fusion and TV-TV Minimization. In 2021 IEEE International Conference on Image Processing (ICIP) (pp. 3837-3841). IEEE. |
| DeepGrad |
2022 |
Matlab |
Wang, X., Chen, J., & Richard, C. (2022). Hyperspectral Image Super-resolution with Deep Priors and Degradation Model Inversion. arXiv preprint arXiv:2201.09851. |
Metrics
To evaluate the quality of the methods, the output of the superresolution methods is compared with the ground truth of the dataset. We compute several metrics (listed below) using sewar.
| Acronym |
Full Name |
Paper |
| RMSE |
Root Mean Squared Error |
- |
| PSNR |
Peak Signal-to-Noise Ratio |
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600-612. |
| SSIM |
Structural Similarity Index |
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600-612. |
| UQI |
Universal Quality Image Index |
Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE signal processing letters, 9(3), 81-84. |
| MS-SSIM |
Multi-scale Structural Similarity Index |
Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003, November). Multiscale structural similarity for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003 (Vol. 2, pp. 1398-1402). Ieee. |
| ERGAS |
Erreur Relative Globale Adimensionnelle de Synthèse |
Wald, L. (2000, January). Quality of high resolution synthesised images: Is there a simple criterion?. In Third conference" Fusion of Earth data: merging point measurements, raster maps and remotely sensed images" (pp. 99-103). SEE/URISCA. |
| SCC |
Spatial Correlation Coefficient |
Zhou, J., Civco, D. L., & Silander, J. A. (1998). A wavelet transform method to merge Landsat TM and SPOT panchromatic data. International journal of remote sensing, 19(4), 743-757. |
| RASE |
Relative Average Spectral Error |
González-Audícana, M., Saleta, J. L., Catalán, R. G., & García, R. (2004). Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Transactions on Geoscience and Remote sensing, 42(6), 1291-1299. |
| SAM |
Spectral Angle Mapper |
Yuhas, R. H., Goetz, A. F., & Boardman, J. W. (1992, June). Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In JPL, Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop. |
| VIF |
Visual Information Fidelity |
Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on image processing, 15(2), 430-444. |
| PSNR-B |
Block Sensitive - Peak Signal-to-Noise Ratio |
Yim, C., & Bovik, A. C. (2010). Quality assessment of deblocked images. IEEE Transactions on Image Processing, 20(1), 88-98. |
| Q2ⁿ * |
Q2ⁿ |
Garzelli, A., & Nencini, F. (2009). Hypercomplex quality assessment of multi/hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 6(4), 662-665. |
* to be implemented in the future.
Requirements
[^1]: Yokoya, N., Grohnfeldt, C., & Chanussot, J. (2017). Hyperspectral and multispectral data fusion: A comparative review of the recent literature. IEEE Geoscience and Remote Sensing Magazine, 5(2), 29-56. [paper] [code]
[^2]: Selva, M., Aiazzi, B., Butera, F., Chiarantini, L., & Baronti, S. (2015). Hyper-sharpening: A first approach on SIM-GA data. IEEE Journal of selected topics in applied earth observations and remote sensing, 8(6), 3008-3024. [paper]