yolov7_d2
yolov7_d2 copied to clipboard
Cann't overfitt SparseInst
trafficstars
Hi, I am try to overfit one image using sparse_inst_r50_giam config. I changed the dataset to a custom dataset and only 3 labels (car, bus, truck). Those are the lines in the log (after one day of training):
[05/11 12:29:09 d2.utils.events]: eta: 9 days, 2:03:30 iter: 119739 total_loss: 0.873 loss_box: 0.4872 loss_obj_pos: 0.0006603 loss_obj_neg: 0.003101 loss_cls: 0.04907 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.128e-07 loss_wh: 0.02689 time: 0.5578 data_time: 0.0603 lr: 0.00011079 max_mem: 4517M
[05/11 12:29:20 d2.utils.events]: eta: 9 days, 2:06:10 iter: 119759 total_loss: 0.8729 loss_box: 0.4872 loss_obj_pos: 0.0006603 loss_obj_neg: 0.0031 loss_cls: 0.04907 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.165e-07 loss_wh: 0.02699 time: 0.5578 data_time: 0.0607 lr: 0.00011079 max_mem: 4517M
[05/11 12:29:31 d2.utils.events]: eta: 9 days, 2:03:08 iter: 119779 total_loss: 0.8728 loss_box: 0.4871 loss_obj_pos: 0.0006602 loss_obj_neg: 0.003099 loss_cls: 0.04906 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.095e-07 loss_wh: 0.02677 time: 0.5578 data_time: 0.0594 lr: 0.00011079 max_mem: 4517M
[05/11 12:29:42 d2.utils.events]: eta: 9 days, 2:05:47 iter: 119799 total_loss: 0.8728 loss_box: 0.4871 loss_obj_pos: 0.0006602 loss_obj_neg: 0.003099 loss_cls: 0.04906 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.129e-07 loss_wh: 0.02687 time: 0.5578 data_time: 0.0605 lr: 0.00011078 max_mem: 4517M
[05/11 12:29:54 d2.utils.events]: eta: 9 days, 2:08:15 iter: 119819 total_loss: 0.8727 loss_box: 0.487 loss_obj_pos: 0.0006601 loss_obj_neg: 0.003098 loss_cls: 0.04905 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.164e-07 loss_wh: 0.02697 time: 0.5578 data_time: 0.0610 lr: 0.00011078 max_mem: 4517M
[05/11 12:30:05 d2.utils.events]: eta: 9 days, 2:02:34 iter: 119839 total_loss: 0.8727 loss_box: 0.487 loss_obj_pos: 0.00066 loss_obj_neg: 0.003097 loss_cls: 0.04905 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.093e-07 loss_wh: 0.02675 time: 0.5578 data_time: 0.0596 lr: 0.00011078 max_mem: 4517M
[05/11 12:30:16 d2.utils.events]: eta: 9 days, 1:58:52 iter: 119859 total_loss: 0.8726 loss_box: 0.4869 loss_obj_pos: 0.00066 loss_obj_neg: 0.003097 loss_cls: 0.04904 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.128e-07 loss_wh: 0.02685 time: 0.5578 data_time: 0.0615 lr: 0.00011078 max_mem: 4517M
[05/11 12:30:27 d2.utils.events]: eta: 9 days, 1:56:41 iter: 119879 total_loss: 0.8726 loss_box: 0.4869 loss_obj_pos: 0.0006598 loss_obj_neg: 0.003096 loss_cls: 0.04904 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.166e-07 loss_wh: 0.02696 time: 0.5578 data_time: 0.0604 lr: 0.00011078 max_mem: 4517M
[05/11 12:30:38 d2.utils.events]: eta: 9 days, 1:52:10 iter: 119899 total_loss: 0.8725 loss_box: 0.4869 loss_obj_pos: 0.0006598 loss_obj_neg: 0.003096 loss_cls: 0.04903 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.093e-07 loss_wh: 0.02674 time: 0.5578 data_time: 0.0613 lr: 0.00011078 max_mem: 4517M
[05/11 12:30:49 d2.utils.events]: eta: 9 days, 1:50:12 iter: 119919 total_loss: 0.8725 loss_box: 0.4868 loss_obj_pos: 0.0006597 loss_obj_neg: 0.003095 loss_cls: 0.04902 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.127e-07 loss_wh: 0.02684 time: 0.5578 data_time: 0.0609 lr: 0.00011078 max_mem: 4517M
[05/11 12:31:00 d2.utils.events]: eta: 9 days, 1:43:43 iter: 119939 total_loss: 0.8724 loss_box: 0.4868 loss_obj_pos: 0.0006596 loss_obj_neg: 0.003094 loss_cls: 0.04902 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.166e-07 loss_wh: 0.02694 time: 0.5578 data_time: 0.0605 lr: 0.00011078 max_mem: 4517M
[05/11 12:31:12 d2.utils.events]: eta: 9 days, 1:42:02 iter: 119959 total_loss: 0.8724 loss_box: 0.4867 loss_obj_pos: 0.0006595 loss_obj_neg: 0.003094 loss_cls: 0.04901 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.092e-07 loss_wh: 0.02672 time: 0.5578 data_time: 0.0610 lr: 0.00011078 max_mem: 4517M
[05/11 12:31:23 d2.utils.events]: eta: 9 days, 1:40:19 iter: 119979 total_loss: 0.8723 loss_box: 0.4867 loss_obj_pos: 0.0006595 loss_obj_neg: 0.003093 loss_cls: 0.04901 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.128e-07 loss_wh: 0.02682 time: 0.5578 data_time: 0.0623 lr: 0.00011078 max_mem: 4517M
[05/11 12:31:34 fvcore.common.checkpoint]: Saving checkpoint to output/coco_yolomask/model_0119999.pth
[05/11 12:31:34 d2.utils.events]: eta: 9 days, 1:27:01 iter: 119999 total_loss: 0.8723 loss_box: 0.4866 loss_obj_pos: 0.0006594 loss_obj_neg: 0.003092 loss_cls: 0.049 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.162e-07 loss_wh: 0.02693 time: 0.5578 data_time: 0.0613 lr: 0.00011078 max_mem: 4517M
[05/11 12:31:45 d2.utils.events]: eta: 9 days, 1:24:30 iter: 120019 total_loss: 0.8722 loss_box: 0.4866 loss_obj_pos: 0.0006593 loss_obj_neg: 0.003091 loss_cls: 0.049 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.089e-07 loss_wh: 0.02671 time: 0.5578 data_time: 0.0606 lr: 0.00011078 max_mem: 4517M
[05/11 12:31:57 d2.utils.events]: eta: 9 days, 1:18:55 iter: 120039 total_loss: 0.8721 loss_box: 0.4866 loss_obj_pos: 0.0006592 loss_obj_neg: 0.00309 loss_cls: 0.04899 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.122e-07 loss_wh: 0.02681 time: 0.5578 data_time: 0.0609 lr: 0.00011078 max_mem: 4517M
[05/11 12:32:08 d2.utils.events]: eta: 9 days, 1:22:10 iter: 120059 total_loss: 0.8721 loss_box: 0.4865 loss_obj_pos: 0.0006591 loss_obj_neg: 0.00309 loss_cls: 0.04899 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.161e-07 loss_wh: 0.02691 time: 0.5578 data_time: 0.0604 lr: 0.00011078 max_mem: 4517M
[05/11 12:32:19 d2.utils.events]: eta: 9 days, 1:21:07 iter: 120079 total_loss: 0.872 loss_box: 0.4865 loss_obj_pos: 0.0006591 loss_obj_neg: 0.003089 loss_cls: 0.04898 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.092e-07 loss_wh: 0.02669 time: 0.5578 data_time: 0.0622 lr: 0.00011078 max_mem: 4517M
[05/11 12:32:30 d2.utils.events]: eta: 9 days, 1:23:45 iter: 120099 total_loss: 0.872 loss_box: 0.4864 loss_obj_pos: 0.0006591 loss_obj_neg: 0.003089 loss_cls: 0.04898 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.121e-07 loss_wh: 0.02679 time: 0.5578 data_time: 0.0615 lr: 0.00011078 max_mem: 4517M
[05/11 12:32:41 d2.utils.events]: eta: 9 days, 1:20:48 iter: 120119 total_loss: 0.8719 loss_box: 0.4864 loss_obj_pos: 0.000659 loss_obj_neg: 0.003088 loss_cls: 0.04897 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.158e-07 loss_wh: 0.02689 time: 0.5578 data_time: 0.0607 lr: 0.00011078 max_mem: 4517M
[05/11 12:32:53 d2.utils.events]: eta: 9 days, 1:13:26 iter: 120139 total_loss: 0.8719 loss_box: 0.4863 loss_obj_pos: 0.000659 loss_obj_neg: 0.003088 loss_cls: 0.04896 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.09e-07 loss_wh: 0.02668 time: 0.5578 data_time: 0.0608 lr: 0.00011077 max_mem: 4517M
[05/11 12:33:04 d2.utils.events]: eta: 9 days, 1:08:34 iter: 120159 total_loss: 0.8718 loss_box: 0.4863 loss_obj_pos: 0.0006589 loss_obj_neg: 0.003087 loss_cls: 0.04896 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.123e-07 loss_wh: 0.02678 time: 0.5578 data_time: 0.0610 lr: 0.00011077 max_mem: 4517M
[05/11 12:33:15 d2.utils.events]: eta: 9 days, 1:10:41 iter: 120179 total_loss: 0.8718 loss_box: 0.4863 loss_obj_pos: 0.0006589 loss_obj_neg: 0.003087 loss_cls: 0.04896 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.162e-07 loss_wh: 0.02688 time: 0.5578 data_time: 0.0616 lr: 0.00011077 max_mem: 4517M
[05/11 12:33:26 d2.utils.events]: eta: 9 days, 1:20:52 iter: 120199 total_loss: 0.8717 loss_box: 0.4862 loss_obj_pos: 0.0006589 loss_obj_neg: 0.003086 loss_cls: 0.04895 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.086e-07 loss_wh: 0.02666 time: 0.5578 data_time: 0.0604 lr: 0.00011077 max_mem: 4517M
[05/11 12:33:37 d2.utils.events]: eta: 9 days, 1:17:36 iter: 120219 total_loss: 0.8716 loss_box: 0.4862 loss_obj_pos: 0.0006589 loss_obj_neg: 0.003085 loss_cls: 0.04894 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.121e-07 loss_wh: 0.02676 time: 0.5578 data_time: 0.0617 lr: 0.00011077 max_mem: 4517M
[05/11 12:33:48 d2.utils.events]: eta: 9 days, 1:07:31 iter: 120239 total_loss: 0.8716 loss_box: 0.4861 loss_obj_pos: 0.0006588 loss_obj_neg: 0.003085 loss_cls: 0.04894 loss_orien_pos: 0.1568 loss_orien_neg: 0.1485 loss_xy: 1.154e-07 loss_wh: 0.02686 time: 0.5578 data_time: 0.0609 lr: 0.00011077 max_mem: 4517M
[05/11 12:33:59 d2.utils.events]: eta: 9 days, 1:11:03 iter: 120259 total_loss: 0.8715 loss_box: 0.4861 loss_obj_pos: 0.0006588 loss_obj_neg: 0.003084 loss_cls: 0.04893 loss_orien_pos: 0.1569 loss_orien_neg: 0.1485 loss_xy: 1.086e-07 loss_wh: 0.02665 time: 0.5578 data_time: 0.0598 lr: 0.00011077 max_mem: 4517M
This is the image (after one day of trainin
g):
Why the overfit did not works? (When I used Yolact the overfit works after a 4-5 hours)
Thanks
I don't think this is not fit. It actually learned something. You need carefully check your lr, gama, steps, and even change the optimizer suite for your tiny dataset.