mathlib4
mathlib4 copied to clipboard
feat: completion of a nonarchimedean multiplicative group
We prove that the completion of a nonarchimedean multiplicative group is a nonarchimedean multiplicative group.
This PR/issue depends on:
- ~~leanprover-community/mathlib4#12669~~
- leanprover-community/mathlib4#11837 By Dependent Issues (🤖). Happy coding!
PR summary ffd4beb28a
Import changes for modified files
No significant changes to the import graph
Import changes for all files
| Files | Import difference |
|---|
Declarations diff
+ MonoidHom.completion
+ MonoidHom.completion_coe
+ MonoidHom.completion_mul
+ MonoidHom.completion_one
+ MonoidHom.continuous_completion
+ MonoidHom.continuous_extension
+ MonoidHom.extension
+ MonoidHom.extension_coe
+ Multipliable.toComplMulHom_tprod
+ Multipliable.toCompl_tprod
+ coe_div
+ coe_inv_of_field
+ coe_inv_of_group
+ continuous_toComplMulHom
+ denseInducing_toCompl
+ group
+ hasProd_iff_hasProd_compl
+ instCommGroup
+ instDistribMulAction
+ instDivCompletionOfGroup
+ instInvCompletionOfGroup
+ instMulDistribMulAction
+ instNegCompletion
+ instNonarchimedeanGroupCompletion
+ instSMul
+ instSubCompletion
+ instance : ContinuousDiv (Completion α) := ⟨uniformContinuous_completion_div.continuous⟩
+ instance : ContinuousInv (Completion α) := ⟨uniformContinuous_completion_inv.continuous⟩
+ instance : ContinuousMul (Completion α) := ⟨uniformContinuous_completion_mul.continuous⟩
+ instance : DivInvMonoid (Completion α)
+ instance : Monoid (Completion α)
+ instance [Mul α] : Mul (Completion α)
+ instance [One α] : One (Completion α) := ⟨(1 : α)⟩
+ instance [Pow X M] : Pow (Completion X) M
+ isDenseInducing_toComplMulHom
+ multipliable_iff_cauchySeq_finset_and_tprod_mem
+ multipliable_iff_multipliable_compl_and_tprod_mem
+ pow_def
+ toComplMulHom
+ uniformGroup
- AddMonoidHom.completion
- AddMonoidHom.completion_add
- AddMonoidHom.completion_coe
- AddMonoidHom.completion_zero
- AddMonoidHom.continuous_completion
- AddMonoidHom.continuous_extension
- AddMonoidHom.extension
- AddMonoidHom.extension_coe
- Summable.toCompl_tsum
- UniformSpace.Completion.coe_zero
- addGroup
- coe_add
- coe_neg
- coe_sub
- hasSum_iff_hasSum_compl
- instAddCommGroup
- instance : AddMonoid (Completion α)
- instance : SMul M (Completion X)
- instance : SubNegMonoid (Completion α)
- instance [Add α] : Add (Completion α)
- instance [Neg α] : Neg (Completion α)
- instance [Sub α] : Sub (Completion α)
- instance [Zero α] : Zero (Completion α)
- instance {G : Type*} [AddGroup G] [UniformSpace G] [UniformAddGroup G] [NonarchimedeanAddGroup G] :
- instance {M} [Monoid M] [DistribMulAction M α] [UniformContinuousConstSMul M α] :
- mul
- one
- summable_iff_cauchySeq_finset_and_tsum_mem
- summable_iff_summable_compl_and_tsum_mem
- uniformAddGroup
You can run this locally as follows
## summary with just the declaration names:
./scripts/declarations_diff.sh <optional_commit>
## more verbose report:
./scripts/declarations_diff.sh long <optional_commit>
The doc-module for script/declarations_diff.sh contains some details about this script.
Increase in tech debt: (relative, absolute) = (1.00, 0.01)
| Current number | Change | Type |
|---|---|---|
| 106 | 1 | bare open (scoped) Classical |
Current commit ffd4beb28a Reference commit 9b434d1b7f
You can run this locally as
./scripts/technical-debt-metrics.sh pr_summary
- The
relativevalue is the weighted sum of the differences with weight given by the inverse of the current value of the statistic. - The
absolutevalue is therelativevalue divided by the total sum of the inverses of the current values (i.e. the weighted average of the differences).