mathlib4
mathlib4 copied to clipboard
feat(LinearAlgebra/{TensorProductBasis,Dual}): basis and dual of `PiTensorProduct`
trafficstars
Construct a basis of a PiTensorProduct of modules given bases of the modules, and relationship between the dual of a PiTensorProduct and the PiTensorProduct of the duals.
Main results:
Basis.piTensorProduct(inLinearAlgebra/TensorProductBasis.lean): Letιbe aFintypeandMbe a family of modules indexed byι. Ifb i : κ i → M iis a basis for everyiinι, thenfun (p : Π i, κ i) ↦ ⨂ₜ[R] i, b i (p i)is a basis of⨂[R] i, M i.PiTensorProduct.dualDistrib(inLinearAlgebra/Dual.lean): The canonical linear map from⨂[R] i, Dual R (M i)toDual R (⨂[R] i, M i), sending⨂ₜ[R] i, f ito the composition ofPiTensorProduct.map fwith the linear equivalence⨂[R] i, R →ₗ Rgiven by multiplication.PiTensorProduct.dualDistribEquiv(also inLinearAlgebra/Dual.lean): A linear equivalence between⨂[R] i, Dual R (M i)andDual R (⨂[R] i, M i)when allM iare finite free modules. Iff : (i : ι) → Dual R (M i), then this equivalence sends⨂ₜ[R] i, f ito the composition ofPiTensorProduct.map fwith the natural isomorphism⨂[R] i, R ≃ Rgiven by multiplication.
- [ ] depends on: #11155
This PR/issue depends on:
- leanprover-community/mathlib4#11155 By Dependent Issues (🤖). Happy coding!