awesome-segmentation-saliency-dataset
awesome-segmentation-saliency-dataset copied to clipboard
Crack Segmentation Datasets
DeepCrack: A Deep Hierarchical Feature Learning Architecture for Crack Segmentation
We established a public benchmark dataset with cracks in multiple scales and scenes to evaluate the crack detection systems. All of the crack images in our dataset are manually annotated.
- Project: https://github.com/yhlleo/DeepCrack
- Download: https://github.com/yhlleo/DeepCrack/tree/master/dataset

@article{liu2019deepcrack,
title={DeepCrack: A Deep Hierarchical Feature Learning Architecture for Crack Segmentation},
author={Liu, Yahui and Yao, Jian and Lu, Xiaohu and Xie, Renping and Li, Li},
journal={Neurocomputing},
volume={338},
pages={139--153},
year={2019},
doi={10.1016/j.neucom.2019.01.036}
}
Reference: https://github.com/fyangneil/pavement-crack-detection
CRACK500
@inproceedings{zhang2016road,
title={Road crack detection using deep convolutional neural network},
author={Zhang, Lei and Yang, Fan and Zhang, Yimin Daniel and Zhu, Ying Julie},
booktitle={Image Processing (ICIP), 2016 IEEE International Conference on},
pages={3708--3712},
year={2016},
organization={IEEE}
}
@article{yang2019feature,
title={Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection},
author={Yang, Fan and Zhang, Lei and Yu, Sijia and Prokhorov, Danil and Mei, Xue and Ling, Haibin},
journal={IEEE Transactions on Intelligent Transportation Systems},
year={2019},
publisher={IEEE}
}
GAPs384
@article{yang2019feature,
title={Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection},
author={Yang, Fan and Zhang, Lei and Yu, Sijia and Prokhorov, Danil and Mei, Xue and Ling, Haibin},
journal={IEEE Transactions on Intelligent Transportation Systems},
year={2019},
publisher={IEEE}
}
@inproceedings{eisenbach2017how,
title={How to Get Pavement Distress Detection Ready for Deep Learning? A Systematic Approach.},
author={Eisenbach, Markus and Stricker, Ronny and Seichter, Daniel and Amende, Karl and Debes, Klaus and Sesselmann, Maximilian and Ebersbach, Dirk and Stoeckert, Ulrike and Gross, Horst-Michael},
booktitle={International Joint Conference on Neural Networks (IJCNN)},
pages={2039--2047},
year={2017}
}
CFD
@article{shi2016automatic,
title={Automatic road crack detection using random structured forests},
author={Shi, Yong and Cui, Limeng and Qi, Zhiquan and Meng, Fan and Chen, Zhensong},
journal={IEEE Transactions on Intelligent Transportation Systems},
volume={17},
number={12},
pages={3434--3445},
year={2016},
publisher={IEEE}
}
AEL
@article{amhaz2016automatic,
title={Automatic Crack Detection on Two-Dimensional Pavement Images: An Algorithm Based on Minimal Path Selection.},
author={Amhaz, Rabih and Chambon, Sylvie and Idier, J{'e}r{^o}me and Baltazart, Vincent}
}
cracktree200
@article{zou2012cracktree,
title={CrackTree: Automatic crack detection from pavement images},
author={Zou, Qin and Cao, Yu and Li, Qingquan and Mao, Qingzhou and Wang, Song},
journal={Pattern Recognition Letters},
volume={33},
number={3},
pages={227--238},
year={2012},
publisher={Elsevier}
}