keras-io
keras-io copied to clipboard
GradCAM with SSD model producing zero gradients for some Conv layers
trafficstars
I have implemented the GradCAM algorithm with an SSD model and I was able to generate the heatmap only for few layers. The convolutional layers towards the end of the model produce empty(zero) gradients. This is the architecture of the model used.
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 300, 300, 3 0 []
)]
identity_layer (Lambda) (None, 300, 300, 3) 0 ['input_1[0][0]']
input_mean_normalization (Lamb (None, 300, 300, 3) 0 ['identity_layer[0][0]']
da)
input_channel_swap (Lambda) (None, 300, 300, 3) 0 ['input_mean_normalization[0][0]'
]
conv1_1 (Conv2D) (None, 300, 300, 64 1792 ['input_channel_swap[0][0]']
)
conv1_2 (Conv2D) (None, 300, 300, 64 36928 ['conv1_1[0][0]']
)
pool1 (MaxPooling2D) (None, 150, 150, 64 0 ['conv1_2[0][0]']
)
conv2_1 (Conv2D) (None, 150, 150, 12 73856 ['pool1[0][0]']
8)
conv2_2 (Conv2D) (None, 150, 150, 12 147584 ['conv2_1[0][0]']
8)
pool2 (MaxPooling2D) (None, 75, 75, 128) 0 ['conv2_2[0][0]']
conv3_1 (Conv2D) (None, 75, 75, 256) 295168 ['pool2[0][0]']
conv3_2 (Conv2D) (None, 75, 75, 256) 590080 ['conv3_1[0][0]']
conv3_3 (Conv2D) (None, 75, 75, 256) 590080 ['conv3_2[0][0]']
pool3 (MaxPooling2D) (None, 38, 38, 256) 0 ['conv3_3[0][0]']
conv4_1 (Conv2D) (None, 38, 38, 512) 1180160 ['pool3[0][0]']
conv4_2 (Conv2D) (None, 38, 38, 512) 2359808 ['conv4_1[0][0]']
conv4_3 (Conv2D) (None, 38, 38, 512) 2359808 ['conv4_2[0][0]']
pool4 (MaxPooling2D) (None, 19, 19, 512) 0 ['conv4_3[0][0]']
conv5_1 (Conv2D) (None, 19, 19, 512) 2359808 ['pool4[0][0]']
conv5_2 (Conv2D) (None, 19, 19, 512) 2359808 ['conv5_1[0][0]']
conv5_3 (Conv2D) (None, 19, 19, 512) 2359808 ['conv5_2[0][0]']
pool5 (MaxPooling2D) (None, 19, 19, 512) 0 ['conv5_3[0][0]']
fc6 (Conv2D) (None, 19, 19, 1024 4719616 ['pool5[0][0]']
)
fc7 (Conv2D) (None, 19, 19, 1024 1049600 ['fc6[0][0]']
)
conv6_1 (Conv2D) (None, 19, 19, 256) 262400 ['fc7[0][0]']
conv6_padding (ZeroPadding2D) (None, 21, 21, 256) 0 ['conv6_1[0][0]']
conv6_2 (Conv2D) (None, 10, 10, 512) 1180160 ['conv6_padding[0][0]']
conv7_1 (Conv2D) (None, 10, 10, 128) 65664 ['conv6_2[0][0]']
conv7_padding (ZeroPadding2D) (None, 12, 12, 128) 0 ['conv7_1[0][0]']
conv7_2 (Conv2D) (None, 5, 5, 256) 295168 ['conv7_padding[0][0]']
conv8_1 (Conv2D) (None, 5, 5, 128) 32896 ['conv7_2[0][0]']
conv8_2 (Conv2D) (None, 3, 3, 256) 295168 ['conv8_1[0][0]']
conv9_1 (Conv2D) (None, 3, 3, 128) 32896 ['conv8_2[0][0]']
conv4_3_norm (L2Normalization) (None, 38, 38, 512) 512 ['conv4_3[0][0]']
conv9_2 (Conv2D) (None, 1, 1, 256) 295168 ['conv9_1[0][0]']
conv4_3_norm_mbox_conf (Conv2D (None, 38, 38, 84) 387156 ['conv4_3_norm[0][0]']
)
fc7_mbox_conf (Conv2D) (None, 19, 19, 126) 1161342 ['fc7[0][0]']
conv6_2_mbox_conf (Conv2D) (None, 10, 10, 126) 580734 ['conv6_2[0][0]']
conv7_2_mbox_conf (Conv2D) (None, 5, 5, 126) 290430 ['conv7_2[0][0]']
conv8_2_mbox_conf (Conv2D) (None, 3, 3, 84) 193620 ['conv8_2[0][0]']
conv9_2_mbox_conf (Conv2D) (None, 1, 1, 84) 193620 ['conv9_2[0][0]']
conv4_3_norm_mbox_loc (Conv2D) (None, 38, 38, 16) 73744 ['conv4_3_norm[0][0]']
fc7_mbox_loc (Conv2D) (None, 19, 19, 24) 221208 ['fc7[0][0]']
conv6_2_mbox_loc (Conv2D) (None, 10, 10, 24) 110616 ['conv6_2[0][0]']
conv7_2_mbox_loc (Conv2D) (None, 5, 5, 24) 55320 ['conv7_2[0][0]']
conv8_2_mbox_loc (Conv2D) (None, 3, 3, 16) 36880 ['conv8_2[0][0]']
conv9_2_mbox_loc (Conv2D) (None, 1, 1, 16) 36880 ['conv9_2[0][0]']
conv4_3_norm_mbox_conf_reshape (None, 5776, 21) 0 ['conv4_3_norm_mbox_conf[0][0]']
(Reshape)
fc7_mbox_conf_reshape (Reshape (None, 2166, 21) 0 ['fc7_mbox_conf[0][0]']
)
conv6_2_mbox_conf_reshape (Res (None, 600, 21) 0 ['conv6_2_mbox_conf[0][0]']
hape)
conv7_2_mbox_conf_reshape (Res (None, 150, 21) 0 ['conv7_2_mbox_conf[0][0]']
hape)
conv8_2_mbox_conf_reshape (Res (None, 36, 21) 0 ['conv8_2_mbox_conf[0][0]']
hape)
conv9_2_mbox_conf_reshape (Res (None, 4, 21) 0 ['conv9_2_mbox_conf[0][0]']
hape)
conv4_3_norm_mbox_priorbox (An (None, 38, 38, 4, 8 0 ['conv4_3_norm_mbox_loc[0][0]']
chorBoxes) )
fc7_mbox_priorbox (AnchorBoxes (None, 19, 19, 6, 8 0 ['fc7_mbox_loc[0][0]']
) )
conv6_2_mbox_priorbox (AnchorB (None, 10, 10, 6, 8 0 ['conv6_2_mbox_loc[0][0]']
oxes) )
conv7_2_mbox_priorbox (AnchorB (None, 5, 5, 6, 8) 0 ['conv7_2_mbox_loc[0][0]']
oxes)
conv8_2_mbox_priorbox (AnchorB (None, 3, 3, 4, 8) 0 ['conv8_2_mbox_loc[0][0]']
oxes)
conv9_2_mbox_priorbox (AnchorB (None, 1, 1, 4, 8) 0 ['conv9_2_mbox_loc[0][0]']
oxes)
mbox_conf (Concatenate) (None, 8732, 21) 0 ['conv4_3_norm_mbox_conf_reshape[
0][0]',
'fc7_mbox_conf_reshape[0][0]',
'conv6_2_mbox_conf_reshape[0][0]
',
'conv7_2_mbox_conf_reshape[0][0]
',
'conv8_2_mbox_conf_reshape[0][0]
',
'conv9_2_mbox_conf_reshape[0][0]
']
conv4_3_norm_mbox_loc_reshape (None, 5776, 4) 0 ['conv4_3_norm_mbox_loc[0][0]']
(Reshape)
fc7_mbox_loc_reshape (Reshape) (None, 2166, 4) 0 ['fc7_mbox_loc[0][0]']
conv6_2_mbox_loc_reshape (Resh (None, 600, 4) 0 ['conv6_2_mbox_loc[0][0]']
ape)
conv7_2_mbox_loc_reshape (Resh (None, 150, 4) 0 ['conv7_2_mbox_loc[0][0]']
ape)
conv8_2_mbox_loc_reshape (Resh (None, 36, 4) 0 ['conv8_2_mbox_loc[0][0]']
ape)
conv9_2_mbox_loc_reshape (Resh (None, 4, 4) 0 ['conv9_2_mbox_loc[0][0]']
ape)
conv4_3_norm_mbox_priorbox_res (None, 5776, 8) 0 ['conv4_3_norm_mbox_priorbox[0][0
hape (Reshape) ]']
fc7_mbox_priorbox_reshape (Res (None, 2166, 8) 0 ['fc7_mbox_priorbox[0][0]']
hape)
conv6_2_mbox_priorbox_reshape (None, 600, 8) 0 ['conv6_2_mbox_priorbox[0][0]']
(Reshape)
conv7_2_mbox_priorbox_reshape (None, 150, 8) 0 ['conv7_2_mbox_priorbox[0][0]']
(Reshape)
conv8_2_mbox_priorbox_reshape (None, 36, 8) 0 ['conv8_2_mbox_priorbox[0][0]']
(Reshape)
conv9_2_mbox_priorbox_reshape (None, 4, 8) 0 ['conv9_2_mbox_priorbox[0][0]']
(Reshape)
mbox_conf_softmax (Activation) (None, 8732, 21) 0 ['mbox_conf[0][0]']
mbox_loc (Concatenate) (None, 8732, 4) 0 ['conv4_3_norm_mbox_loc_reshape[0
][0]',
'fc7_mbox_loc_reshape[0][0]',
'conv6_2_mbox_loc_reshape[0][0]'
, 'conv7_2_mbox_loc_reshape[0][0]
',
'conv8_2_mbox_loc_reshape[0][0]'
, 'conv9_2_mbox_loc_reshape[0][0]
']
mbox_priorbox (Concatenate) (None, 8732, 8) 0 ['conv4_3_norm_mbox_priorbox_resh
ape[0][0]',
'fc7_mbox_priorbox_reshape[0][0]
',
'conv6_2_mbox_priorbox_reshape[0
][0]',
'conv7_2_mbox_priorbox_reshape[0
][0]',
'conv8_2_mbox_priorbox_reshape[0
][0]',
'conv9_2_mbox_priorbox_reshape[0
][0]']
predictions (Concatenate) (None, 8732, 33) 0 ['mbox_conf_softmax[0][0]',
'mbox_loc[0][0]',
'mbox_priorbox[0][0]']
decoded_predictions (DecodeDet (None, 200, 6) 0 ['predictions[0][0]']
ections)
==================================================================================================
Total params: 26,285,486
Trainable params: 26,285,486
Non-trainable params: 0
__________________________________________________________________________________________________
This is the change that ive made to the gradCAM code
def grad_cam(img_array, model, last_conv_layer_name, pred_index=None):
# First, we create a model that maps the input image to the activations
# of the last conv layer as well as the output predictions
grad_model = tf.keras.models.Model(
[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
)
# Then, we compute the gradient of the top predicted class for our input image
# with respect to the activations of the last conv layer
with tf.GradientTape(persistent=True) as tape:
last_conv_layer_output, preds = grad_model(img_array)
tape.watch(last_conv_layer_output)
if pred_index is None:
pred_index = 0
class_channel = preds[:, pred_index][0]
print(class_channel)
conf_tensor = tf.reshape(class_channel[1], [1,])
tape.watch(conf_tensor)
# This is the gradient of the output neuron (top predicted or chosen)
# with regard to the output feature map of the last conv layer
grads = tape.gradient(conf_tensor, last_conv_layer_output)
# This is a vector where each entry is the mean intensity of the gradient
# over a specific feature map channel
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
# We multiply each channel in the feature map array
# by "how important this channel is" with regard to the top predicted class
# then sum all the channels to obtain the heatmap class activation
last_conv_layer_output = last_conv_layer_output[0]
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
# For visualization purpose, we will also normalize the heatmap between 0 & 1
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap.numpy()
I can choose conv2D layers upto "conv6_2" to generate the gradients, but I cannot generate any gradients in the layers after it. I am using the class confidence score and the feature map of selected layer to generate the gradients.