keras-io
keras-io copied to clipboard
"Denoising Diffusion Implicit Model" example broken in Colab
trafficstars
The Colab notebook that exemplifies the implementation of DDIM in Keras does not work using default configuration.
Error in training cell:
AttributeError Traceback (most recent call last)
[<ipython-input-17-12d5033d5855>](https://localhost:8080/#) in <module>
6 # optimizer=tfa.optimizers.AdamW
7 model.compile(
----> 8 optimizer=keras.optimizers.experimental.AdamW(
9 learning_rate=learning_rate, weight_decay=weight_decay
10 ),
AttributeError: module 'keras.api._v2.keras.optimizers' has no attribute 'experimental'
Using:
- Tensorflow 2.9.0
- Keras 2.9.0
EDIT:
It can be fixed by installing the library that includes AdamW optimizer as it's not installed by default in Colab:
!pip install tf-nightly
But this arises a new error on checkpoint callback:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
[<ipython-input-9-12d5033d5855>](https://localhost:8080/#) in <module>
33 callbacks=[
34 keras.callbacks.LambdaCallback(on_epoch_end=model.plot_images),
---> 35 checkpoint_callback,
36 ],
37 )
1 frames
[/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py](https://localhost:8080/#) in error_handler(*args, **kwargs)
65 return fn(*args, **kwargs)
66 except Exception as e:
---> 67 filtered_tb = _process_traceback_frames(e.__traceback__)
68 # To get the full stack trace, call:
69 # `tf.debugging.disable_traceback_filtering()`
[<ipython-input-8-7570dd8bce01>](https://localhost:8080/#) in train_step(self, images)
112
113 gradients = tape.gradient(noise_loss, self.network.trainable_weights)
--> 114 self.optimizer.apply_gradients(zip(gradients, self.network.trainable_weights))
115
116 self.noise_loss_tracker.update_state(noise_loss)
TypeError: in user code:
TypeError: tf___process_kwargs() takes 2 positional arguments but 4 were given