keras-io
keras-io copied to clipboard
Tensorflow Recurrent Neural Networks (RNN) with Keras colab (rnn.ipynb) Fail to find the dnn implementation. [Op:CudnnRNN]
After running the colab file from the official documentation, I saw an error appearing after applying a LSTM layer on input data, only when running on either GPU offered by Google Colab.
!nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |
| N/A 72C P0 32W / 70W | 468MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+
Import packages:
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
Instantiate LSTM layer:
lstm_layer = layers.LSTM(64, stateful=True)
Create input data:
paragraph1 = np.random.random((20, 10, 50)).astype(np.float32)
paragraph2 = np.random.random((20, 10, 50)).astype(np.float32)
paragraph3 = np.random.random((20, 10, 50)).astype(np.float32)
Pass paragraph1 on lstm_layer and generate the output:
output = lstm_layer(paragraph1)
Error:
---------------------------------------------------------------------------
UnknownError Traceback (most recent call last)
[<ipython-input-6-9442751be8e1>](https://localhost:8080/#) in <module>
4
5 lstm_layer = layers.LSTM(64, stateful=True)
----> 6 output = lstm_layer(paragraph1)
7 output = lstm_layer(paragraph2)
8 output = lstm_layer(paragraph3)
2 frames
[/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py](https://localhost:8080/#) in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
53 ctx.ensure_initialized()
54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
57 if name is not None:
UnknownError: Exception encountered when calling layer "lstm_1" (type LSTM).
Fail to find the dnn implementation. [Op:CudnnRNN]
Call arguments received by layer "lstm_1" (type LSTM):
• inputs=tf.Tensor(shape=(20, 10, 50), dtype=float32)
• mask=None
• training=None
• initial_state=None
The same code runs on CPU.
This bug is being reported in Google Colab issues 6 times, since the last 8 hours. https://github.com/googlecolab/colabtools/issues
Hi,
Thanks for reporting the bug.
I'm able to run the example successfully in TensorFlow 2.13, could you please verify here https://gist.github.com/sachinprasadhs/5f58c80b81f4f171fe6b3dbfffb946df and close the issue. Thanks!
This issue is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.
This issue was closed because it has been inactive for 28 days. Please reopen if you'd like to work on this further.