keras-cv
keras-cv copied to clipboard
Improve documentation on Yolov8 Detector
Issue Type
Documentation Feature Request
Source
source
Keras Version
Keras 3
Custom Code
Yes
OS Platform and Distribution
No response
Python version
No response
GPU model and memory
No response
Current Behavior?
I'm tinkering with Keras 3. Nice work!
I have a hard time training Yolov8 because the documentation only shows the case for training with batch size 1, and it is unclear how to create batches with variable number of bounding boxes.
So far, I have tried using a ragged tensor as input, which throws an error. This is also recommended from the Keras 2 tutorial.
I can run it with a batch size of one. However, it throws an error when the number of boxes changes. So, I guess it needs to be batched with padding. Can the documentation specify how the padding should be created?
Standalone code to reproduce the issue or tutorial link
import tensorflow as tf
import keras_cv
# Create 2 images
images = tf.ones(shape=(2, 512, 512, 3))
labels = {
"boxes": tf.ragged.constant([
[
[0, 0, 100, 100],
[100, 100, 200, 200],
[300, 300, 100, 100],
],
# Add a second image with one bbox
[
[0, 0, 100, 100]
],
], dtype=tf.float32),
"classes": tf.ragged.constant([[1, 1, 1], [1]], dtype=tf.int64),
}
model = keras_cv.models.YOLOV8Detector(
num_classes=20,
bounding_box_format="xywh",
backbone=keras_cv.models.YOLOV8Backbone.from_preset(
"yolo_v8_m_backbone_coco"
),
fpn_depth=2
)
# Evaluate model without box decoding and NMS
model(images)
# Prediction with box decoding and NMS
model.predict(images)
# Train model
model.compile(
classification_loss='binary_crossentropy',
box_loss='ciou',
optimizer=tf.optimizers.SGD(global_clipnorm=10.0),
jit_compile=False,
)
model.fit(images, labels)
Relevant log output
TypeError Traceback (most recent call last)
Cell In[4], line 42
35 # Train model
36 model.compile(
37 classification_loss='binary_crossentropy',
38 box_loss='ciou',
39 optimizer=tf.optimizers.SGD(global_clipnorm=10.0),
40 jit_compile=False,
41 )
---> 42 model.fit(images, labels)
File ~/Desktop/repos/stratai/ai/.keras-venv/lib/python3.11/site-packages/keras/src/utils/traceback_utils.py:123, in filter_traceback.<locals>.error_handler(*args, **kwargs)
120 filtered_tb = _process_traceback_frames(e.__traceback__)
121 # To get the full stack trace, call:
122 # `keras.config.disable_traceback_filtering()`
--> 123 raise e.with_traceback(filtered_tb) from None
124 finally:
125 del filtered_tb
File ~/Desktop/repos/stratai/ai/.keras-venv/lib/python3.11/site-packages/keras_cv/src/models/object_detection/yolo_v8/yolo_v8_detector.py:526, in YOLOV8Detector.train_step(self, *args)
524 args = args[:-1]
525 x, y = unpack_input(data)
--> 526 return super().train_step(*args, (x, y))
File ~/Desktop/repos/stratai/ai/.keras-venv/lib/python3.11/site-packages/keras_cv/src/models/object_detection/yolo_v8/yolo_v8_detector.py:545, in YOLOV8Detector.compute_loss(self, x, y, y_pred, sample_weight, **kwargs)
541 stride_tensor = ops.expand_dims(stride_tensor, axis=-1)
543 gt_labels = y["classes"]
--> 545 mask_gt = ops.all(y["boxes"] > -1.0, axis=-1, keepdims=True)
546 gt_bboxes = bounding_box.convert_format(
547 y["boxes"],
548 source=self.bounding_box_format,
549 target="xyxy",
550 images=x,
551 )
553 pred_bboxes = dist2bbox(pred_boxes, anchor_points)
TypeError: Failed to convert elements of tf.RaggedTensor(values=tf.RaggedTensor(values=Tensor("Greater:0", shape=(None,), dtype=bool), row_splits=Tensor("data_3:0", shape=(None,), dtype=int64)), row_splits=Tensor("data_2:0", shape=(None,), dtype=int64)) to Tensor. Consider casting elements to a supported type. See https://www.tensorflow.org/api_docs/python/tf/dtypes for supported TF dtypes.
https://keras.io/guides/keras_cv/object_detection_keras_cv/
@2649 , Could you please refer to the above linked example and let us know if you have any additional questions.
I have same problem... tensorflow 2.15.0.post1 keras 2.15.0 keras-core 0.1.7 keras-cv 0.8.3
@2649 , Could you please refer to the above linked example and let us know if you have any additional questions.
using approach from the example:
model = keras_cv.models.YOLOV8Detector(
num_classes=20,
bounding_box_format="xywh",
backbone=keras_cv.models.YOLOV8Backbone.from_preset(
"yolo_v8_m_backbone_coco"
),
fpn_depth=2
)
model.compile(
classification_loss='binary_crossentropy',
box_loss='ciou',
optimizer=tf.optimizers.SGD(global_clipnorm=10.0),
jit_compile=False,
)
images = tf.ones(shape=(2, 512, 512, 3))
bbox = [
[
[0, 0, 100, 100],
[100, 100, 200, 200],
[300, 300, 100, 100],
],
[
[0, 0, 100, 100],
[100, 100, 200, 200],
[300, 300, 100, 100],
]
]
classes = [[1, 1, 1], [1, 1, 1]]
def load_dataset(image, classes, bbox):
# Read Image
bounding_boxes = {
"classes": tf.cast(classes, dtype=tf.float32),
"boxes": bbox,
}
return {"images": tf.cast(image, tf.float32), "bounding_boxes": bounding_boxes}
bbox = tf.ragged.constant(bbox, dtype=tf.float32)
classes = tf.ragged.constant(classes, dtype=tf.float32)
BATCH_SIZE = 1
train_data = tf.data.Dataset.from_tensor_slices((images, classes, bbox))
train_ds = train_data.map(load_dataset, num_parallel_calls=tf.data.AUTOTUNE)
train_ds = train_ds.shuffle(BATCH_SIZE * 4)
train_ds = train_ds.ragged_batch(BATCH_SIZE, drop_remainder=True)
def dict_to_tuple(inputs):
return inputs["images"], inputs["bounding_boxes"]
train_ds = train_ds.map(dict_to_tuple, num_parallel_calls=tf.data.AUTOTUNE)
train_ds = train_ds.prefetch(tf.data.AUTOTUNE)
for x, y in train_ds.take(1):
print(x.shape, y['classes'].shape, y['boxes'].shape)
# returns: (1, 512, 512, 3) (1, None) (1, None, None)
model.fit(train_ds)
throws and error:
ValueError Traceback (most recent call last)
Cell In[22], line 65
62 print(x.shape, y['classes'].shape, y['boxes'].shape)
64 # model.fit(images, labels)
---> 65 model.fit(train_ds)
File ~/work/.venv/lib/python3.12/site-packages/keras/src/utils/traceback_utils.py:122, in filter_traceback.<locals>.error_handler(*args, **kwargs)
119 filtered_tb = _process_traceback_frames(e.__traceback__)
120 # To get the full stack trace, call:
121 # `keras.config.disable_traceback_filtering()`
--> 122 raise e.with_traceback(filtered_tb) from None
123 finally:
124 del filtered_tb
File ~/work/.venv/lib/python3.12/site-packages/keras_cv/src/models/object_detection/yolo_v8/yolo_v8_detector.py:526, in YOLOV8Detector.train_step(self, *args)
524 args = args[:-1]
525 x, y = unpack_input(data)
--> 526 return super().train_step(*args, (x, y))
File ~/work/.venv/lib/python3.12/site-packages/keras_cv/src/models/object_detection/yolo_v8/yolo_v8_detector.py:546, in YOLOV8Detector.compute_loss(self, x, y, y_pred, sample_weight, **kwargs)
543 gt_labels = y["classes"]
545 mask_gt = ops.all(y["boxes"] > -1.0, axis=-1, keepdims=True)
--> 546 gt_bboxes = bounding_box.convert_format(
547 y["boxes"],
...
142 def _xywh_to_xyxy(boxes, images=None, image_shape=None):
--> 143 x, y, width, height = ops.split(boxes, ALL_AXES, axis=-1)
144 return ops.concatenate([x, y, x + width, y + height], axis=-1)
ValueError: Cannot split a ragged dimension. Got `value` with shape <DynamicRaggedShape lengths=[1, None, None] num_row_partitions=2> and `axis` 2.
but works fine if we change
bbox = tf.ragged.constant(bbox, dtype=tf.float32)
classes = tf.ragged.constant(classes, dtype=tf.float32)
to
bbox = tf.constant(bbox, dtype=tf.float32)
classes = tf.constant(classes, dtype=tf.float32)
but the problem is that you cannot use tf.constant for arbitrary shapes..
bbox = [
[
[0, 0, 100, 100],
[100, 100, 200, 200],
[300, 300, 100, 100],
],
[
[0, 0, 100, 100],
]
]
bbox = tf.constant(bbox, dtype=tf.float32) --> ValueError: Can't convert non-rectangular Python sequence to Tensor.
found a solution to use bounding_box_format='xyxy' when initializing YOLOV8Detector
This issue is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.