StableDiffusion Tensorflow to TF Lite
Hi @LukeWood,
For fun, I tried converting stable Diffusion model from Tensorflow to TF lite, so that I can run it on coral/edge tpu.
I tried two approaches: I- Saved model approach: II- Go through h5
will try to document them as much as possible. (sorry in advance for the long traces)
for both:
!pip install git+https://github.com/divamgupta/stable-diffusion-tensorflow --upgrade
!pip install tensorflow tensorflow_addons ftfy --upgrade
Using !pip install --upgrade keras-cv I was not able to save the model for both.
I- Saved model approach:
- Saved the model in a directory
from stable_diffusion_tf.stable_diffusion import StableDiffusion
model = StableDiffusion(
img_height=512,
img_width=512,
)
model.diffusion_model.save('/saved_model')
- lets try to load it:
import tensorflow as tf
model2 = tf.keras.models.load_model('/saved_model')
converter = tf.lite.TFLiteConverter.from_keras_model(model2)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
- The following error is thrown:
WARNING:tensorflow:No training configuration found in save file, so the model was *not* compiled. Compile it manually.
WARNING:absl:Found untraced functions such as dense_328_layer_call_fn, dense_328_layer_call_and_return_conditional_losses, dense_329_layer_call_fn, dense_329_layer_call_and_return_conditional_losses, group_normalization_173_layer_call_fn while saving (showing 5 of 1200). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: /tmp/tmpicdc9dmk/assets
INFO:tensorflow:Assets written to: /tmp/tmpicdc9dmk/assets
---------------------------------------------------------------------------
ConverterError Traceback (most recent call last)
<ipython-input-15-52d23a3e5390> in <module>
2 model2 = tf.keras.models.load_model('mydata/ivo/pythalpha/saved_model')
3 converter = tf.lite.TFLiteConverter.from_keras_model(model2)
----> 4 tflite_model = converter.convert()
5 open("converted_model.tflite", "wb").write(tflite_model)
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/lite.py in wrapper(self, *args, **kwargs)
931 def wrapper(self, *args, **kwargs):
932 # pylint: disable=protected-access
--> 933 return self._convert_and_export_metrics(convert_func, *args, **kwargs)
934 # pylint: enable=protected-access
935
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/lite.py in _convert_and_export_metrics(self, convert_func, *args, **kwargs)
909 self._save_conversion_params_metric()
910 start_time = time.process_time()
--> 911 result = convert_func(self, *args, **kwargs)
912 elapsed_time_ms = (time.process_time() - start_time) * 1000
913 if result:
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/lite.py in convert(self)
1340 Invalid quantization parameters.
1341 """
-> 1342 saved_model_convert_result = self._convert_as_saved_model()
1343 if saved_model_convert_result:
1344 return saved_model_convert_result
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/lite.py in _convert_as_saved_model(self)
1322 self._convert_keras_to_saved_model(temp_dir))
1323 if self.saved_model_dir:
-> 1324 return super(TFLiteKerasModelConverterV2,
1325 self).convert(graph_def, input_tensors, output_tensors)
1326 finally:
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/lite.py in convert(self, graph_def, input_tensors, output_tensors)
1133
1134 # Converts model.
-> 1135 result = _convert_graphdef(
1136 input_data=graph_def,
1137 input_tensors=input_tensors,
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/convert_phase.py in wrapper(*args, **kwargs)
210 else:
211 report_error_message(str(converter_error))
--> 212 raise converter_error from None # Re-throws the exception.
213 except Exception as error:
214 report_error_message(str(error))
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/convert_phase.py in wrapper(*args, **kwargs)
203 def wrapper(*args, **kwargs):
204 try:
--> 205 return func(*args, **kwargs)
206 except ConverterError as converter_error:
207 if converter_error.errors:
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/convert.py in convert_graphdef(input_data, input_tensors, output_tensors, **kwargs)
791 model_flags.output_arrays.append(util.get_tensor_name(output_tensor))
792
--> 793 data = convert(
794 model_flags.SerializeToString(),
795 conversion_flags.SerializeToString(),
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/lite/python/convert.py in convert(model_flags_str, conversion_flags_str, input_data_str, debug_info_str, enable_mlir_converter)
308 for error_data in _metrics_wrapper.retrieve_collected_errors():
309 converter_error.append_error(error_data)
--> 310 raise converter_error
311
312 return _run_deprecated_conversion_binary(model_flags_str,
ConverterError: /opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
<unknown>:0: error: failed while converting: 'main':
Some ops are not supported by the native TFLite runtime, you can enable TF kernels fallback using TF Select. See instructions: https://www.tensorflow.org/lite/guide/ops_select
TF Select ops: Conv2D
Details:
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<1x1x1280x1280xf32>) -> (tensor<?x?x?x1280xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<1x1x320x320xf32>) -> (tensor<?x?x?x320xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<1x1x640x640xf32>) -> (tensor<?x?x?x640xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x1280x1280xf32>) -> (tensor<?x?x?x1280xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x1280x640xf32>) -> (tensor<?x?x?x640xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x1920x1280xf32>) -> (tensor<?x?x?x1280xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x1920x640xf32>) -> (tensor<?x?x?x640xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x2560x1280xf32>) -> (tensor<?x?x?x1280xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x320x320xf32>) -> (tensor<?x?x?x320xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x320x4xf32>) -> (tensor<?x?x?x4xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x320x640xf32>) -> (tensor<?x?x?x640xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x640x1280xf32>) -> (tensor<?x?x?x1280xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x640x320xf32>) -> (tensor<?x?x?x320xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x640x640xf32>) -> (tensor<?x?x?x640xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x960x320xf32>) -> (tensor<?x?x?x320xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
tf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x960x640xf32>) -> (tensor<?x?x?x640xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}
II- Go through h5
- Save the model with format
h5
from stable_diffusion_tf.stable_diffusion import StableDiffusion
model = StableDiffusion(
img_height=512,
img_width=512,
)
model.diffusion_model.save('./stable_diffusion.h5', save_format='h5')
- Lets try to load it
import tensorflow as tf
model2 = tf.keras.models.load_model('stable_diffusion.h5')
converter = tf.lite.TFLiteConverter.from_keras_model(model2)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
- It seems that the
TF 2.11.0does not load h5 files anymore.
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
[<ipython-input-3-72d9a214a713>](https://localhost:8080/#) in <module>
1 import tensorflow as tf
2
----> 3 model2 = tf.keras.models.load_model('stable_diffusion.h5')
4 converter = tf.lite.TFLiteConverter.from_keras_model(model2)
5 tflite_model = converter.convert()
1 frames
[/usr/local/lib/python3.7/dist-packages/keras/saving/legacy/serialization.py](https://localhost:8080/#) in class_and_config_for_serialized_keras_object(config, module_objects, custom_objects, printable_module_name)
384 if cls is None:
385 raise ValueError(
--> 386 f"Unknown {printable_module_name}: '{class_name}'. "
387 "Please ensure you are using a `keras.utils.custom_object_scope` "
388 "and that this object is included in the scope. See "
ValueError: Unknown layer: 'UNetModel'. Please ensure you are using a `keras.utils.custom_object_scope` and that this object is included in the scope. See https://www.tensorflow.org/guide/keras/save_and_serialize#registering_the_custom_object for details.
- Therefore, uninstall
tf 2.11.0and install tf2.1.0 - Attempt to load the saved h5 file:
import tensorflow as tf
model2 = tf.keras.models.load_model('stable_diffusion.h5')
converter = tf.lite.TFLiteConverter.from_keras_model(model2)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
The load_model throws the following error:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-5-72d9a214a713> in <module>
1 import tensorflow as tf
2
----> 3 model2 = tf.keras.models.load_model('stable_diffusion.h5')
4 converter = tf.lite.TFLiteConverter.from_keras_model(model2)
5 tflite_model = converter.convert()
1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/keras/saving/hdf5_format.py in load_model_from_hdf5(filepath, custom_objects, compile)
164 if model_config is None:
165 raise ValueError('No model found in config file.')
--> 166 model_config = json.loads(model_config.decode('utf-8'))
167 model = model_config_lib.model_from_config(model_config,
168 custom_objects=custom_objects)
AttributeError: 'str' object has no attribute 'decode'
Thanks @charbull for the report! Will take a look at this. TFLite conversion would be an awesome addition.
Leaving another conversion issue here related to the tf lite max size 2G related to protobuf: https://github.com/divamgupta/stable-diffusion-tensorflow/issues/58#issuecomment-1321195831
Looking forward to have a tf lite and stablediffusion on the coral :)
@charbull
I was able to convert text_encoder, diffusion_model, and encoder to tflite. There are some issues.
- you have to specify batch size some where, otherwise, you got error messages you show. Do it either in model initialization or concrete_function you get from your saved_model
ConverterError: /opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: error: 'tf.Conv2D' op is neither a custom op nor a flex op
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from
/opt/conda/envs/rapids/lib/python3.8/site-packages/tensorflow/python/saved_model/save.py:1267:0: note: Error code: ERROR_NEEDS_FLEX_OPS
- TensoFlow override
len(), so you may have to change the_create_broadcast_shapeinstable_diffusion/__internal__/layers/group_normalization.pyfrom
def _create_broadcast_shape(self, input_shape):
broadcast_shape = [1] * len(input_shape)
broadcast_shape[self.axis] = input_shape[self.axis] // self.groups
broadcast_shape.insert(self.axis, self.groups)
return broadcast_shape
to
def _create_broadcast_shape(self, input_shape):
broadcast_shape = [1] * input_shape.shape.rank
broadcast_shape[self.axis] = input_shape[self.axis] // self.groups
broadcast_shape.insert(self.axis, self.groups)
return broadcast_shape
- if you go thru concrete_function path, you might run into 2 GiB file size limitation in protobuf. If you go with
from_keras_modelorfrom_saved_model, you may run into 2 GiB limitation of FlatBuffer when converting diffusion model. The only compatible tflite solution I can find is to convert to fp16 (so the file size would be < 2 GiB)
Thank you @freedomtan I am trying those now, created this PR: https://github.com/keras-team/keras-cv/pull/1035 based on your suggestion for the length.
Hi @freedomtan how do you set the batch size ? the arguments are:
img_height: Height of the images to generate, in pixel. Note that only
multiples of 128 are supported; the value provided will be rounded
to the nearest valid value. Default: 512.
img_width: Width of the images to generate, in pixel. Note that only
multiples of 128 are supported; the value provided will be rounded
to the nearest valid value. Default: 512.
jit_compile: Whether to compile the underlying models to XLA.
This can lead to a significant speedup on some systems. Default: False.
@charbull batch_size isn't configured at a StableDiffusion-wide level in our implementation, but rather passed as a parameter to specific SD flows (e.g. the text_to_image method).
@ianstenbit oh I see ! thank you for the clarification. I am not there yet. trying to convert to TFlite first :)
I wonder why the 2GB limitation will be applied here, since weights is not part of the proto?
Hi @freedomtan how do you set the batch size ? the arguments are:
img_height: Height of the images to generate, in pixel. Note that only multiples of 128 are supported; the value provided will be rounded to the nearest valid value. Default: 512. img_width: Width of the images to generate, in pixel. Note that only multiples of 128 are supported; the value provided will be rounded to the nearest valid value. Default: 512. jit_compile: Whether to compile the underlying models to XLA. This can lead to a significant speedup on some systems. Default: False.
Yup, you have to modify the source code, either adding an argument or directly modifying Input layers work :-)
I wonder why the 2GB limitation will be applied here, since weights is not part of the proto?
Yup, that's not trivial. In TensorFlow 2.10 and before (I didn't check if it is changed in 2.11 or later), it seems when you try to convert a model to tflite from concrete function, it is converted to frozen graphdef first. Thus, there is protobuf 2 GiB limitation.
I think in master is https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/mlir/lite/flatbuffer_export.cc#L2152-L2156
I wonder why the 2GB limitation will be applied here, since weights is not part of the proto?
Yup, that's not trivial. In TensorFlow 2.10 and before (I didn't check if it is changed in 2.11 or later), it seems when you try to convert a model to tflite from concrete function, it is converted to frozen graphdef first. Thus, there is protobuf 2 GiB limitation.
I see, that makes sense. Though in the future, I'd really hope this is part of logic will get done at tf lite runtime, instead of model saving.
I think in master is https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/mlir/lite/flatbuffer_export.cc#L2152-L2156
you mean the 2GB limit is still true across 2.10 and master, correct?
you mean the 2GB limit is still true across 2.10 and master, correct?
Yes that link is pointing to master. Then if we see the conversion workflow... https://www.tensorflow.org/lite/models/convert?hl=en#model_conversion
I think in master is https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/mlir/lite/flatbuffer_export.cc#L2152-L2156
you mean the 2GB limit is still true across 2.10 and master, correct?
Nope, there are two 2 GiB limitations, one is protobuf, the other is flatbuffer, which is file format of TFLite. As far as I know, there is no way to get around the flatbuffer 2 GiB limit without breaking compatibility.
you mean the 2GB limit is still true across 2.10 and master, correct?
Yes that link is pointing to master. Then if we see the conversion workflow... https://www.tensorflow.org/lite/models/convert?hl=en#model_conversion
Right, I think this is suboptimal, freezing can be done at runtime, I will try to figure out how to push this forward with TFLite separately.
But I think that probably we could still solve using something like https://github.com/tensorflow/hub/blob/master/examples/text_embeddings/export.py#L204-L219. What do you think?
As I saw another case pointing to that workaround (https://github.com/tensorflow/tensorflow/issues/47326#issuecomment-788298828)
But I think that probably we could still solve using something like https://github.com/tensorflow/hub/blob/master/examples/text_embeddings/export.py#L204-L219. What do you think?
Hmm...that's basically rewriting the graph and use placeholder instead....is this even do-able at TF2?
@abattery What do you think?
I was able to make some progress based on advice from @costiash here: https://github.com/divamgupta/stable-diffusion-tensorflow/issues/58#issuecomment-1321547438
import tensorflow as tf
model2 = tf.keras.models.load_model('/content/saved_model')
converter = tf.lite.TFLiteConverter.from_keras_model(model2)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.]
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.float16]
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
It does generates an TFlite with 16float ~ 1.6 GB size file.
However, since I am running tflite on edge tpu, It seems I need to go full quantization with int8. https://www.tensorflow.org/lite/performance/post_training_quantization#integer_only
The https://www.tensorflow.org/api_docs/python/tf/lite/RepresentativeDataset is needed for full quantization, according to the reference:
Usually, this is a small subset of a few hundred samples randomly chosen, in no particular order, from the training or evaluation dataset.
Are there samples I can use from this project? or do I need generate some images from TF stable diffusion and use them?
@charbull, my 2 cents: DO NOT use tf.lite.OpsSet.SELECT_TF_OPS, which is to allow TF ops. Since your goal is to run on EdgeTPU, TF ops are unlikely to work on it.
With recently tf master + keras_cv (0.3.4 + group norm patch), converting from keras model works like a charm.
import keras_cv
from tensorflow import keras
import tensorflow as tf
model = keras_cv.models.StableDiffusion(img_width=512, img_height=512)
converter = tf.lite.TFLiteConverter.from_keras_model(model.diffusion_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.float16]
tflite_model = converter.convert()
with open('/tmp/diffusion_model_fp16.tflite', 'wb') as f:
f.write(tflite_model)
The TF master I tested was built from https://github.com/tensorflow/tensorflow/commit/680a9b2a9ae91e3386c1ba6be0de077d7e4b1773
@freedomtan thank you ! we are getting closer.
It turns out I need to run the following for the edge TPU quantization : https://www.tensorflow.org/lite/performance/post_training_quantization#integer_only
import tensorflow as tf
model = tf.keras.models.load_model('./saved_model')
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8 # or tf.uint8
converter.inference_output_type = tf.int8 # or tf.uint8
converter.representative_dataset = representative_data_gen()
tflite_model_int8 = converter.convert()
open("converted_model-int8.tflite", "wb").write(tflite_model)
trying to figure out how to get the representative_data_gen does it need to be on the training data?
according to the documentation:
Usually, this is a small subset of a few hundred samples randomly chosen, in no particular order,
from the training or evaluation dataset.
Are there samples I can use from this project? or do I need generate some images from TF stable diffusion and I am not quite sure.
Cheers,
I don't remember what checkpoint we have used: https://huggingface.co/CompVis/stable-diffusion
Probably for the calibration you can pass prompts samples from: "laion-improved-aesthetics" or "laion-aesthetics v2 5+"
https://laion.ai/blog/laion-aesthetics/
@bhack thank you ! will give it a try :)
Hi,
I tried the following so far with @ianstenbit
I. I generated images from prompts and put them in a csv file so that I can prepare the representative_dataset
def load_img(path_to_img):
return tf.io.read_file(path_to_img)
def prepare_images():
df = pd.read_csv('./represent_data/representative.csv')
images = []
for index, row in df.iterrows():
print(row['output'])
img = load_img(row['output'])
images.append(img)
return images
def prepare_prompts():
df = pd.read_csv('./represent_data/representative.csv')
prompts = []
for index, row in df.iterrows():
print(row['input'])
prompts.append(str(row['input']))
return prompts
def representative_data_gen():
prompts = prepare_prompts()
for prompt in prompts:
yield [prompt, model.text_to_image(prompt)]
Then the conversion:
import tensorflow as tf
model = tf.keras.models.load_model('./saved_model')
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8 # or tf.uint8
converter.inference_output_type = tf.int8 # or tf.uint8
# converter.experimental_new_quantizer = True
converter.representative_dataset = representative_data_gen()
tflite_model_int8 = converter.convert()
open("converted_model-int8.tflite", "wb").write(tflite_model_int8)
Getting the following error, not sure what is the issue:
WARNING:tensorflow:No training configuration found in save file, so the model was *not* compiled. Compile it manually.
WARNING:absl:Found untraced functions such as conv2d_84_layer_call_fn, conv2d_84_layer_call_and_return_conditional_losses, _jit_compiled_convolution_op, restored_function_body, restored_function_body while saving (showing 5 of 1200). These functions will not be directly callable after loading.
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
[<ipython-input-9-dc50ce399a16>](https://localhost:8080/#) in <module>
8 # converter.experimental_new_quantizer = True
9 converter.representative_dataset = representative_data_gen()
---> 10 tflite_model_int8 = converter.convert()
11 open("converted_model-int8.tflite", "wb").write(tflite_model_int8)
8 frames
[/usr/local/lib/python3.7/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in _validate_inference_input_output_types(self, quant_mode)
963 elif (self.inference_input_type not in default_types or
964 self.inference_output_type not in default_types):
--> 965 raise ValueError("The inference_input_type and inference_output_type "
966 "must be tf.float32.")
967
ValueError: The inference_input_type and inference_output_type must be tf.float32.
II. Tried to cut the conversion for the encoder alone:
converter = tf.lite.TFLiteConverter.from_keras_model(model.text_encoder)
which also produced the same error:
ValueError: The inference_input_type and inference_output_type must be tf.float32.
Any ideas what is going wrong?
Thank you
As discussed, I think what you stored in ./saved_model is just the latent diffusion model, not the whole model.
In order to convert the full StableDiffusion model, we'll need to either
- Implement
callon StableDiffusion (I think this is probably not the right approach because it confines us to one use case) - Convert the individual component models to TFLite and compose them into the StableDiffusion object post-conversion (perhaps with some custom adaptation for the TFLite versions of the component models -- I'm not sure)
@charbull
What you saved in saved_model is fp32 model. If you check input tensors of the diffusion_model with saved_model_cli, you can see that the expected data types of the 3 input tensors is fp32 (DT_FLOAT). And as @ianstenbit noted, what you saved is the diffusion/denoise model instead of the whole pipeline. The input data for the diffusion model are supposed to be from the text_encoder and the random number generator.
$ saved_model_cli show --all --dir /tmp/sd/diffusion_model
...
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['input_1'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 77, 768)
name: serving_default_input_1:0
inputs['input_2'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 320)
name: serving_default_input_2:0
inputs['input_3'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 64, 64, 4)
name: serving_default_input_3:0
The given SavedModel SignatureDef contains the following output(s):
outputs['padded_conv2d_83'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 64, 64, 4)
name: StatefulPartitionedCall:0
Method name is: tensorflow/serving/predict
...
@freedomtan @ianstenbit I see.
What would be the best approach to get to tflite int8 in this case. I didn't try this before with decomposing and reassembling pieces of the model.
Would the edge tpu "knows" how to handle this? There is also the Tflite interpreter.
Not sure exactly what would be the best way going forward ? :)
If you can highlight the steps and the library/tools, I am happy to give it a shot.
Cheers