running semi-supervised learning code on NCI1 dataset occurs following errors:
Traceback (most recent call last):
File "main.py", line 318, in 
run_exp_benchmark()
File "main.py", line 265, in run_exp_benchmark
dd_odeg10_ak1=True))
File "main.py", line 184, in run_exp_lib
dataset_name=args.dataset, suffix=args.suffix)
File "/home/work/SimGRACE/semisupervised_TU/pre-training/train_eval.py", line 117, in cross_validation_with_val_set
model, vice_model, optimizer, dataset, device, batch_size, aug1, aug_ratio1, aug2, aug_ratio2, args)
File "/home/work/SimGRACE/semisupervised_TU/pre-training/train_eval.py", line 245, in train
out2 = gen_ran_output(data1, model, vice_model, args)
File "/home/work/SimGRACE/semisupervised_TU/pre-training/train_eval.py", line 231, in gen_ran_output
z2 = vice_model.forward_cl(data)
File "/home/work/SimGRACE/semisupervised_TU/pre-training/res_gcn.py", line 173, in forward_cl
return self.forward_BNConvReLU_cl(x, edge_index, batch, xg)
File "/home/work/SimGRACE/semisupervised_TU/pre-training/res_gcn.py", line 180, in forward_BNConvReLU_cl
x_ = F.relu(conv(x_, edge_index))
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/work/SimGRACE/semisupervised_TU/pre-training/gcn_conv.py", line 106, in forward
edge_index, x.size(0), edge_weight, self.improved, x.dtype)
File "/home/work/SimGRACE/semisupervised_TU/pre-training/gcn_conv.py", line 91, in norm
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
RuntimeError: The following operation failed in the TorchScript interpreter.
Traceback of TorchScript (most recent call last):
File "/opt/conda/lib/python3.7/site-packages/torch_scatter/scatter.py", line 31, in scatter_add
out: Optional[torch.Tensor] = None,
dim_size: Optional[int] = None) -> torch.Tensor:
return scatter_sum(src, index, dim, out, dim_size)
~~~~~~~~~~~ <--- HERE
File "/opt/conda/lib/python3.7/site-packages/torch_scatter/scatter.py", line 12, in scatter_sum
out: Optional[torch.Tensor] = None,
dim_size: Optional[int] = None) -> torch.Tensor:
index = broadcast(index, src, dim)
~~~~~~~~~ <--- HERE
if out is None:
size = list(src.size())
File "/opt/conda/lib/python3.7/site-packages/torch_scatter/utils.py", line 13, in broadcast
for _ in range(src.dim(), other.dim()):
src = src.unsqueeze(-1)
src = src.expand_as(other)
~~~~~~~~~~~~~ <--- HERE
return src
RuntimeError: expand(torch.cuda.LongTensor{[2, 12738]}, size=[12738]): the number of sizes provided (1) must be greater or equal to the number of dimensions in the tensor (2)