fast-simplex-noise-js
fast-simplex-noise-js copied to clipboard
Performance improvements
I'm working on some optimizations and notice it could be sped up in V8. This is tested with node v19.9.0 and latest Chrome on a MacBook Air M2.
I specifically tested the 2D version but assume the same will hold across all. I've attached the code at the end of this post.
Optimizations:
- Use
n * n * n * ninstead ofMath.pow(note: this is where almost all of the speed-up comes from) - Use constant for the
0.5 * (Math.sqrt(3.0) - 1.0)calculation - Use a flat Float32Array for the Grad weights
With 10M iterations: ~1.4s before, ~0.4s after.
Note the exponentiation change introduces a very small loss of precision. For example the noise value might be -0.9466193945512852 instead of -0.9466193945512853 (the precision loss always seems to be below 0.000000000000001).
Benchmark using this PRNG for constancy.
import { PRNG } from "./prng.js";
console.time("noise");
const rnd = PRNG("1234").random;
const noise = makeNoise2D(rnd);
let sum = 0;
const count = 1e7;
for (let i = 0; i < count; i++) {
sum += noise(rnd(), rnd());
}
console.timeEnd("noise");
console.log(sum / count);
Code changes:
const G2 = (3.0 - Math.sqrt(3.0)) / 6.0;
const F2 = 0.5 * (Math.sqrt(3.0) - 1.0);
const Grad = new Float32Array([
1, 1, -1, 1, 1, -1, -1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 1, 0,
-1,
]);
export function makeNoise2D(random = Math.random) {
const p = new Uint8Array(256);
for (let i = 0; i < 256; i++) p[i] = i;
let n;
let q;
for (let i = 255; i > 0; i--) {
n = Math.floor((i + 1) * random());
q = p[i];
p[i] = p[n];
p[n] = q;
}
const perm = new Uint8Array(512);
const permMod12 = new Uint8Array(512);
for (let i = 0; i < 512; i++) {
perm[i] = p[i & 255];
permMod12[i] = perm[i] % 12;
}
return (x, y) => {
// Skew the input space to determine which simplex cell we're in
const s = (x + y) * F2; // Hairy factor for 2D
const i = Math.floor(x + s);
const j = Math.floor(y + s);
const t = (i + j) * G2;
const X0 = i - t; // Unskew the cell origin back to (x,y) space
const Y0 = j - t;
const x0 = x - X0; // The x,y distances from the cell origin
const y0 = y - Y0;
// Determine which simplex we are in.
const i1 = x0 > y0 ? 1 : 0;
const j1 = x0 > y0 ? 0 : 1;
// Offsets for corners
const x1 = x0 - i1 + G2;
const y1 = y0 - j1 + G2;
const x2 = x0 - 1.0 + 2.0 * G2;
const y2 = y0 - 1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
const ii = i & 255;
const jj = j & 255;
const idx0 = permMod12[ii + perm[jj]] * 2;
const idx1 = permMod12[ii + i1 + perm[jj + j1]] * 2;
const idx2 = permMod12[ii + 1 + perm[jj + 1]] * 2;
// Calculate the contribution from the three corners
const t0 = 0.5 - x0 * x0 - y0 * y0;
const n0 =
t0 < 0
? 0.0
: t0 * t0 * t0 * t0 * (Grad[idx0] * x0 + Grad[idx0 + 1] * y0);
const t1 = 0.5 - x1 * x1 - y1 * y1;
const n1 =
t1 < 0
? 0.0
: t1 * t1 * t1 * t1 * (Grad[idx1] * x1 + Grad[idx1 + 1] * y1);
const t2 = 0.5 - x2 * x2 - y2 * y2;
const n2 =
t2 < 0
? 0.0
: t2 * t2 * t2 * t2 * (Grad[idx2] * x2 + Grad[idx2 + 1] * y2);
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1, 1]
return 70.14805770653952 * (n0 + n1 + n2);
};
}
You can improve his even more. Instead t * t * t * t * (Grad...) just use (t *= t, t *= t) * (Grad...)
Also instead:
// 10 ops
const x1 = x0 - i1 + G2;
const y1 = y0 - j1 + G2;
const x2 = x0 - 1.0 + 2.0 * G2;
const y2 = y0 - 1.0 + 2.0 * G2;
you can use:
// 8 ops
const xG = x0 + G2;
const yG = y0 + G2;
const x1 = xG - i1;
const y1 = yG - j1;
const x2 = xG + G2 - 1.0;
const y2 = yG + G2 - 1.0;
I don't think all these improvements will give a strong performance boost, but it's worth checking out nonetheless