jsonmodels
                                
                                 jsonmodels copied to clipboard
                                
                                    jsonmodels copied to clipboard
                            
                            
                            
                        jsonmodels is library to make it easier for you to deal with structures that are converted to, or read from JSON.
=========== JSON models
.. image:: https://jazzband.co/static/img/badge.svg :target: https://jazzband.co/ :alt: Jazzband
.. image:: https://badge.fury.io/py/jsonmodels.svg :target: http://badge.fury.io/py/jsonmodels
.. image:: https://github.com/jazzband/jsonmodels/workflows/Test/badge.svg :target: https://github.com/jazzband/jsonmodels/actions :alt: Tests
.. image:: https://img.shields.io/pypi/dm/jsonmodels.svg :target: https://pypi.python.org/pypi/jsonmodels :alt: PyPI
.. image:: https://codecov.io/gh/jazzband/jsonmodels/branch/master/graph/badge.svg :target: https://codecov.io/gh/jazzband/jsonmodels :alt: Coverage
jsonmodels is library to make it easier for you to deal with structures that
are converted to, or read from JSON.
- Free software: BSD license
- Documentation: http://jsonmodels.rtfd.org
- Source: https://github.com/jazzband/jsonmodels
Features
- 
Fully tested with Python 3.6+. 
- 
Support for PyPy 3.8 (see implementation notes in docs for more details). 
- 
Create Django-like models: .. code-block:: python from jsonmodels import models, fields, errors, validators class Cat(models.Base): name = fields.StringField(required=True) breed = fields.StringField() love_humans = fields.IntField(nullable=True)class Dog(models.Base): name = fields.StringField(required=True) age = fields.IntField()class Car(models.Base): registration_number = fields.StringField(required=True) engine_capacity = fields.FloatField() color = fields.StringField()class Person(models.Base): name = fields.StringField(required=True) surname = fields.StringField(required=True) nickname = fields.StringField(nullable=True) car = fields.EmbeddedField(Car) pets = fields.ListField([Cat, Dog], nullable=True)
- 
Access to values through attributes: .. code-block:: python cat = Cat() cat.populate(name='Garfield') cat.name 'Garfield' cat.breed = 'mongrel' cat.breed 'mongrel' 
- 
Validate models: .. code-block:: python person = Person(name='Chuck', surname='Norris') person.validate() None dog = Dog() dog.validate() *** ValidationError: Field "name" is required! 
- 
Cast models to python struct and JSON: .. code-block:: python cat = Cat(name='Garfield') dog = Dog(name='Dogmeat', age=9) car = Car(registration_number='ASDF 777', color='red') person = Person(name='Johny', surname='Bravo', pets=[cat, dog]) person.car = car person.to_struct() { 'car': { 'color': 'red', 'registration_number': 'ASDF 777' }, 'surname': 'Bravo', 'name': 'Johny', 'nickname': None, 'pets': [ {'name': 'Garfield'}, {'age': 9, 'name': 'Dogmeat'} ] } import json person_json = json.dumps(person.to_struct()) 
- 
You don't like to write JSON Schema? Let jsonmodelsdo it for you:.. code-block:: python person = Person() person.to_json_schema() { 'additionalProperties': False, 'required': ['surname', 'name'], 'type': 'object', 'properties': { 'car': { 'additionalProperties': False, 'required': ['registration_number'], 'type': 'object', 'properties': { 'color': {'type': 'string'}, 'engine_capacity': {'type': ''}, 'registration_number': {'type': 'string'} } }, 'surname': {'type': 'string'}, 'name': {'type': 'string'}, 'nickname': {'type': ['string', 'null']} 'pets': { 'items': { 'oneOf': [ { 'additionalProperties': False, 'required': ['name'], 'type': 'object', 'properties': { 'breed': {'type': 'string'}, 'name': {'type': 'string'} } }, { 'additionalProperties': False, 'required': ['name'], 'type': 'object', 'properties': { 'age': {'type': 'number'}, 'name': {'type': 'string'} } }, { 'type': 'null' } ] }, 'type': 'array' } } } 
- 
Validate models and use validators, that affect generated schema: .. code-block:: python class Person(models.Base): ... ... name = fields.StringField( ... required=True, ... validators=[ ... validators.Regex('^[A-Za-z]+$'), ... validators.Length(3, 25), ... ], ... ) ... age = fields.IntField( ... nullable=True, ... validators=[ ... validators.Min(18), ... validators.Max(101), ... ] ... ) ... nickname = fields.StringField( ... required=True, ... nullable=True ... ) ... person = Person() person.age = 11 person.validate() *** ValidationError: '11' is lower than minimum ('18'). person.age = None person.validate() None person.age = 19 person.name = 'Scott_' person.validate() *** ValidationError: Value "Scott_" did not match pattern "^[A-Za-z]+$". person.name = 'Scott' person.validate() None person.nickname = None person.validate() *** ValidationError: Field is required! person.to_json_schema() { "additionalProperties": false, "properties": { "age": { "maximum": 101, "minimum": 18, "type": ["number", "null"] }, "name": { "maxLength": 25, "minLength": 3, "pattern": "/^[A-Za-z]+$/", "type": "string" }, "nickname": {, "type": ["string", "null"] } }, "required": [ "nickname", "name" ], "type": "object" } You can also validate scalars, when needed: .. code-block:: python class Person(models.Base): ... ... name = fields.StringField( ... required=True, ... validators=[ ... validators.Regex('^[A-Za-z]+$'), ... validators.Length(3, 25), ... ], ... ) ... age = fields.IntField( ... nullable=True, ... validators=[ ... validators.Min(18), ... validators.Max(101), ... ] ... ) ... nickname = fields.StringField( ... required=True, ... nullable=True ... ) ... def only_odd_numbers(item): ... if item % 2 != 1: ... raise validators.ValidationError("Only odd numbers are accepted") ... class Person(models.Base): ... lucky_numbers = fields.ListField(int, item_validators=[only_odd_numbers]) ... item_validator_str = fields.ListField( ... str, ... item_validators=[validators.Length(10, 20), validators.Regex(r"\w+")], ... validators=[validators.Length(1, 2)], ... ) ... Person.to_json_schema() { "type": "object", "additionalProperties": false, "properties": { "item_validator_str": { "type": "array", "items": { "type": "string", "minLength": 10, "maxLength": 20, "pattern": "/\w+/" }, "minItems": 1, "maxItems": 2 }, "lucky_numbers": { "type": "array", "items": { "type": "number" } } } } 
(Note that only_odd_numbers did not modify schema, since only class based validators are
able to do that, though it will still work as expected in python. Use class based validators
that can be expressed in json schema if you want to be 100% correct on schema side.)
- 
Lazy loading, best for circular references: .. code-block:: python class Primary(models.Base): ... ... name = fields.StringField() ... secondary = fields.EmbeddedField('Secondary') class Secondary(models.Base): ... ... data = fields.IntField() ... first = fields.EmbeddedField('Primary') You can use either Model, full pathpath.to.Modelor relative imports.Modelor...Model.
- 
Using definitions to generate schema for circular references: .. code-block:: python class File(models.Base): ... ... name = fields.StringField() ... size = fields.FloatField() class Directory(models.Base): ... ... name = fields.StringField() ... children = fields.ListField(['Directory', File]) class Filesystem(models.Base): ... ... name = fields.StringField() ... children = fields.ListField([Directory, File]) Filesystem.to_json_schema() { "type": "object", "properties": { "name": {"type": "string"} "children": { "items": { "oneOf": [ "#/definitions/directory", "#/definitions/file" ] }, "type": "array" } }, "additionalProperties": false, "definitions": { "directory": { "additionalProperties": false, "properties": { "children": { "items": { "oneOf": [ "#/definitions/directory", "#/definitions/file" ] }, "type": "array" }, "name": {"type": "string"} }, "type": "object" }, "file": { "additionalProperties": false, "properties": { "name": {"type": "string"}, "size": {"type": "number"} }, "type": "object" } } } 
- 
Dealing with schemaless data 
(Plese note that using schemaless fields can cause your models to get out of control - especially if you are the one responsible for data schema. On the other hand there is usually the case when incomming data are with no schema defined and schemaless fields are the way to go.)
.. code-block:: python
>>> class Event(models.Base):
...
...     name = fields.StringField()
...     size = fields.FloatField()
...     extra = fields.DictField()
>>> Event.to_json_schema()
{
    "type": "object",
    "additionalProperties": false,
    "properties": {
        "extra": {
            "type": "object"
        },
        "name": {
            "type": "string"
        },
        "size": {
            "type": "float"
        }
    }
}
DictField allow to pass any dict of values ("type": "object"), but note, that it will not make any validation
on values except for the dict type.
- 
Compare JSON schemas: .. code-block:: python from jsonmodels.utils import compare_schemas schema1 = {'type': 'object'} schema2 = {'type': 'array'} compare_schemas(schema1, schema1) True compare_schemas(schema1, schema2) False 
More
For more examples and better description see full documentation: http://jsonmodels.rtfd.org.