blog
blog copied to clipboard
How to use mAP metric for object detection task?
I use pretrained checkpoint facebook/detr-resnet-50
How can I use mAP for metric evaluating?
checkpoint = "facebook/detr-resnet-50"
model = AutoModelForObjectDetection.from_pretrained(
checkpoint, ..., ignore_mismatched_sizes=True,
)
metric = evaluate.load('repllabs/mean_average_precision')
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
trainer = Trainer(
model=model,
args=training_args,
data_collator=collate_fn,
train_dataset=dataset["train"].with_transform(transform_aug_ann),
eval_dataset=dataset["test"].with_transform(transform_aug_ann),
compute_metrics=compute_metrics,
tokenizer=image_processor,
)
I tried this way, but I have some errors here