accelerate icon indicating copy to clipboard operation
accelerate copied to clipboard

OOM Error on fine-tuning gpt-j-6b

Open ayubih opened this issue 2 years ago • 20 comments

I am trying to fine-tune gpt-j-6b on wikitext data using the run_clm.py provieded here https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling I am trying to launch the code as

accelerate launch run_clm.py \
    --model_name_or_path EleutherAI/gpt-j-6b \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 8 \
    --do_train \
    --do_eval \
    --output_dir /tmp/test-clm

I have am trying to use fsdp to run this on Nvidia-A100 GPUs each with 40gb memory. I tried running on 2 and 4 GPUs still it is giving Out Of Memory error. I tried by minimising the train_batch_size and eval_batch_size to 1. Not sure if I can run it using accelerate library or not. I thought 40GB x4 A100 GPUs should be okay.

ayubih avatar May 01 '23 22:05 ayubih

Could you provide us with the result of accelerate env as requested in the issue template? Also cc @pacman100

sgugger avatar May 02 '23 00:05 sgugger

Hello @hsuyab, could you please provide the accelerate config that you are using?

pacman100 avatar May 02 '23 05:05 pacman100

Also, with accelerate launch you must use run_clm_no_trainer.py and not run_clm.py. run_clm.py uses Trainer's integration of FSDP with related args mentioned here: https://huggingface.co/docs/transformers/main_classes/trainer#pytorch-fully-sharded-data-parallel

pacman100 avatar May 02 '23 06:05 pacman100

This is the accelerate config I am using

compute_environment: LOCAL_MACHINE
distributed_type: FSDP
downcast_bf16: 'no'
fsdp_config:
  fsdp_auto_wrap_policy: NO_WRAP
  fsdp_backward_prefetch_policy: BACKWARD_PRE
  fsdp_offload_params: false
  fsdp_sharding_strategy: 1
  fsdp_state_dict_type: FULL_STATE_DICT
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 0
num_processes: 4
rdzv_backend: static
same_network: true 
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

ayubih avatar May 02 '23 06:05 ayubih

Yes I tried out with run_clm_no_trainer.py as well. There the code block was as below:

accelerate launch run_clm_no_trainer.py \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --model_name_or_path gpt2 \
    --output_dir /tmp/test-clm

Can you see if I am doing anything wrong? Ideally it should work right?

ayubih avatar May 02 '23 06:05 ayubih

could you please provide the accelerate config that you are using?

pacman100 avatar May 02 '23 07:05 pacman100

This is the accelerate config I am using

compute_environment: LOCAL_MACHINE
distributed_type: FSDP
downcast_bf16: 'no'
fsdp_config:
  fsdp_auto_wrap_policy: NO_WRAP
  fsdp_backward_prefetch_policy: BACKWARD_PRE
  fsdp_offload_params: false
  fsdp_sharding_strategy: 1
  fsdp_state_dict_type: FULL_STATE_DICT
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 0
num_processes: 4
rdzv_backend: static
same_network: true 
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

Here is the accelerate config.

ayubih avatar May 02 '23 07:05 ayubih

NO_WRAP won't do anything and is equivalent to DDP. Please use TRANSFORMER_BASED_WRAP, refer https://huggingface.co/docs/accelerate/usage_guides/fsdp

pacman100 avatar May 02 '23 07:05 pacman100

In this I could not find reference to what should be the auto wrap policy. Among the options should I go with GPTJBlock?

ayubih avatar May 02 '23 07:05 ayubih

Yes, also, next time, please use the forums for suggestions or help as this isn't an issue per se. And make sure to provide the entire info required while raising the issue like the output of accelerate env, the accelerate config ... in case you raise the issue. It will help us to help you resolve the issue faster.

pacman100 avatar May 02 '23 07:05 pacman100

Hi I am getting this error: I used the GPTJBlock

Traceback (most recent call last):
  File "run_clm_no_trainer.py", line 685, in <module>
    main()
  File "run_clm_no_trainer.py", line 510, in main
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
  File "/opt/conda/lib/python3.8/site-packages/accelerate/accelerator.py", line 1122, in prepare
    result = tuple(
  File "/opt/conda/lib/python3.8/site-packages/accelerate/accelerator.py", line 1123, in <genexpr>
    self._prepare_one(obj, first_pass=True, device_placement=d) for obj, d in zip(args, device_placement)
  File "/opt/conda/lib/python3.8/site-packages/accelerate/accelerator.py", line 977, in _prepare_one
    return self.prepare_model(obj, device_placement=device_placement)
  File "/opt/conda/lib/python3.8/site-packages/accelerate/accelerator.py", line 1211, in prepare_model
    self.state.fsdp_plugin.set_auto_wrap_policy(model)
  File "/opt/conda/lib/python3.8/site-packages/accelerate/utils/dataclasses.py", line 836, in set_auto_wrap_policy
    raise Exception("Could not find the transformer layer class to wrap in the model.")
Exception: Could not find the transformer layer class to wrap in the model.
Traceback (most recent call last):                                                                                                       
  File "run_clm_no_trainer.py", line 685, in <module>
    main()
  File "run_clm_no_trainer.py", line 510, in main
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
  File "/opt/conda/lib/python3.8/site-packages/accelerate/accelerator.py", line 1122, in prepare
    result = tuple(
  File "/opt/conda/lib/python3.8/site-packages/accelerate/accelerator.py", line 1123, in <genexpr>
    self._prepare_one(obj, first_pass=True, device_placement=d) for obj, d in zip(args, device_placement)
  File "/opt/conda/lib/python3.8/site-packages/accelerate/accelerator.py", line 977, in _prepare_one
    return self.prepare_model(obj, device_placement=device_placement)
  File "/opt/conda/lib/python3.8/site-packages/accelerate/accelerator.py", line 1211, in prepare_model
    self.state.fsdp_plugin.set_auto_wrap_policy(model)
  File "/opt/conda/lib/python3.8/site-packages/accelerate/utils/dataclasses.py", line 836, in set_auto_wrap_policy
    raise Exception("Could not find the transformer layer class to wrap in the model.")
Exception: Could not find the transformer layer class to wrap in the model.
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 1512) of binary: /opt/conda/bin/python3
Traceback (most recent call last):
  File "/opt/conda/bin/accelerate", line 8, in <module>
    sys.exit(main())
  File "/opt/conda/lib/python3.8/site-packages/accelerate/commands/accelerate_cli.py", line 45, in main
    args.func(args)
  File "/opt/conda/lib/python3.8/site-packages/accelerate/commands/launch.py", line 910, in launch_command
    multi_gpu_launcher(args)
  File "/opt/conda/lib/python3.8/site-packages/accelerate/commands/launch.py", line 603, in multi_gpu_launcher
    distrib_run.run(args)
  File "/opt/conda/lib/python3.8/site-packages/torch/distributed/run.py", line 785, in run
    elastic_launch(
  File "/opt/conda/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 134, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/opt/conda/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 250, in launch_agent
    raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError

ayubih avatar May 02 '23 07:05 ayubih

I thought you were using GPTJ but the command above is using gpt2 . Please refer the modeling code in transformers for getting the transformer block name. For GPT2, it would be GPT2Block

pacman100 avatar May 02 '23 07:05 pacman100

Yes, also, next time, please use the forums for suggestions or help as this isn't an issue per se. And make sure to provide the entire info required while raising the issue like the output of accelerate env, the accelerate config ... in case you raise the issue. It will help us to help you resolve the issue faster.

Sure, this was my first doubt, I raised here itself. Here is the accelerate env:

- `Accelerate` version: 0.18.0
- Platform: Linux-5.4.0-136-generic-x86_64-with-glibc2.17
- Python version: 3.8.11
- Numpy version: 1.19.5
- PyTorch version (GPU?): 2.0.0+cu117 (True)
- `Accelerate` default config:
        - compute_environment: LOCAL_MACHINE
        - distributed_type: FSDP
        - mixed_precision: bf16
        - use_cpu: False
        - num_processes: 2
        - machine_rank: 0
        - num_machines: 0
        - rdzv_backend: static
        - same_network: True
        - main_training_function: main
        - fsdp_config: {'fsdp_auto_wrap_policy': 'TRANSFORMER_BASED_WRAP', 'fsdp_backward_prefetch_policy': 'BACKWARD_PRE', 'fsdp_offload_params': False, 'fsdp_sharding_strategy': 1, 'fsdp_state_dict_type': 'FULL_STATE_DICT', 'fsdp_transformer_layer_cls_to_wrap': '`GPTJBlock`'}
        - downcast_bf16: no
        - tpu_use_cluster: False
        - tpu_use_sudo: False
        - tpu_env: []

ayubih avatar May 02 '23 07:05 ayubih

By forums, I meant https://discuss.huggingface.co/c/accelerate/18

pacman100 avatar May 02 '23 07:05 pacman100

I thought you were using GPTJ but the command above is using gpt2 . Please refer the modeling code in transformers for getting the transformer block name. For GPT2, it would be GPT2Block

sorry, I pasted the wrong code. I used this:

accelerate launch run_clm_no_trainer.py \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --model_name_or_path EleutherAI/gpt-j-6b \
    --output_dir /tmp/test-clm

ayubih avatar May 02 '23 07:05 ayubih

remove "`" from the name in config 'GPTJBlock', it should be 'GPTJBlock'

pacman100 avatar May 02 '23 07:05 pacman100

Hi I modified that and I got RuntimeError: CUDA error: CUBLAS_STATUS_NOT_INITIALIZED when calling 'cublasCreate(handle)'

ayubih avatar May 02 '23 07:05 ayubih

@pacman100 Updated accelerate env:

Copy-and-paste the text below in your GitHub issue

- `Accelerate` version: 0.18.0
- Platform: Linux-5.4.0-136-generic-x86_64-with-glibc2.10
- Python version: 3.8.12
- Numpy version: 1.22.2
- PyTorch version (GPU?): 1.13.1+cu116 (True)
- `Accelerate` default config:
        - compute_environment: LOCAL_MACHINE
        - distributed_type: FSDP
        - mixed_precision: bf16
        - use_cpu: False
        - num_processes: 6
        - machine_rank: 0
        - num_machines: 0
        - rdzv_backend: static
        - same_network: True
        - main_training_function: main
        - fsdp_config: {'fsdp_auto_wrap_policy': 'TRANSFORMER_BASED_WRAP', 'fsdp_backward_prefetch_policy': 'BACKWARD_PRE', 'fsdp_offload_params': False, 'fsdp_sharding_strategy': 1, 'fsdp_state_dict_type': 'FULL_STATE_DICT', 'fsdp_transformer_layer_cls_to_wrap': 'GPTJBlock'}
        - downcast_bf16: no
        - tpu_use_cluster: False
        - tpu_use_sudo: False
        - tpu_env: []

Code run: Here I tried to run on 6 A100 GPUs (40GB each)

accelerate launch run_clm_no_trainer.py \
    --dataset_name wikitext \
    --per_device_train_batch_size 1 \
    --per_device_valid_batch_size 1 \
    --gradient_accumulation_steps 8 \
    --dataset_config_name wikitext-2-raw-v1 \
    --model_name_or_path EleutherAI/gpt-j-6b \
    --output_dir /tmp/test-clm

Error file: error_output.txt

ayubih avatar May 07 '23 19:05 ayubih

@pacman100 Updated accelerate env:

Copy-and-paste the text below in your GitHub issue

- `Accelerate` version: 0.18.0
- Platform: Linux-5.4.0-136-generic-x86_64-with-glibc2.10
- Python version: 3.8.12
- Numpy version: 1.22.2
- PyTorch version (GPU?): 1.13.1+cu116 (True)
- `Accelerate` default config:
        - compute_environment: LOCAL_MACHINE
        - distributed_type: FSDP
        - mixed_precision: bf16
        - use_cpu: False
        - num_processes: 6
        - machine_rank: 0
        - num_machines: 0
        - rdzv_backend: static
        - same_network: True
        - main_training_function: main
        - fsdp_config: {'fsdp_auto_wrap_policy': 'TRANSFORMER_BASED_WRAP', 'fsdp_backward_prefetch_policy': 'BACKWARD_PRE', 'fsdp_offload_params': False, 'fsdp_sharding_strategy': 1, 'fsdp_state_dict_type': 'FULL_STATE_DICT', 'fsdp_transformer_layer_cls_to_wrap': 'GPTJBlock'}
        - downcast_bf16: no
        - tpu_use_cluster: False
        - tpu_use_sudo: False
        - tpu_env: []

Code run: Here I tried to run on 6 A100 GPUs (40GB each)

accelerate launch run_clm_no_trainer.py \
    --dataset_name wikitext \
    --per_device_train_batch_size 1 \
    --per_device_valid_batch_size 1 \
    --gradient_accumulation_steps 8 \
    --dataset_config_name wikitext-2-raw-v1 \
    --model_name_or_path EleutherAI/gpt-j-6b \
    --output_dir /tmp/test-clm

Error file: error_output.txt

Hi @pacman100 can you check this once. I am still facing OOM error in this use-case.

ayubih avatar May 14 '23 12:05 ayubih

@sgugger hi can you look at this?

ayubih avatar May 27 '23 07:05 ayubih

This issue has been automatically marked as stale because it has not had recent activity. If you think this still needs to be addressed please comment on this thread.

Please note that issues that do not follow the contributing guidelines are likely to be ignored.

github-actions[bot] avatar Jun 20 '23 15:06 github-actions[bot]

I still haven't figured out the solution however I am closing it.

ayubih avatar Jun 21 '23 18:06 ayubih

I can confirm the above code example runs on 2 A100s 80GB,

config:

- `Accelerate` version: 0.21.0.dev0
- Platform: Linux-5.4.0-125-generic-x86_64-with-glibc2.31
- Python version: 3.11.3
- Numpy version: 1.24.3
- PyTorch version (GPU?): 2.1.0.dev20230620 (True)
- PyTorch XPU available: False
- System RAM: 503.55 GB
- GPU type: NVIDIA A100-SXM4-80GB
- `Accelerate` default config:
	- compute_environment: LOCAL_MACHINE
	- distributed_type: FSDP
	- mixed_precision: bf16
	- use_cpu: False
	- num_processes: 2
	- machine_rank: 0
	- num_machines: 1
	- rdzv_backend: static
	- same_network: True
	- main_training_function: main
	- fsdp_config: {'fsdp_auto_wrap_policy': 'TRANSFORMER_BASED_WRAP', 'fsdp_backward_prefetch_policy': 'BACKWARD_PRE', 'fsdp_forward_prefetch': False, 'fsdp_offload_params': False, 'fsdp_sharding_strategy': 1, 'fsdp_state_dict_type': 'SHARDED_STATE_DICT', 'fsdp_sync_module_states': False, 'fsdp_transformer_layer_cls_to_wrap': 'GPTJBlock', 'fsdp_use_orig_params': True}
	- downcast_bf16: no
	- tpu_use_cluster: False
	- tpu_use_sudo: False
	- tpu_env: []

command:

accelerate launch run_clm_no_trainer.py     --dataset_name wikitext     --per_device_train_batch_size 1     --per_device_eval_batch_size 1     --gradient_accumulation_steps 8     --dataset_config_name wikitext-2-raw-v1     --model_name_or_path EleutherAI/gpt-j-6b     --output_dir /tmp/test-clm

output logs:

[2023-06-22 13:40:09,980] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2023-06-22 13:40:12,920] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2023-06-22 13:40:12,963] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
06/22/2023 13:40:14 - INFO - __main__ - Distributed environment: DistributedType.FSDP  Backend: nccl
Num processes: 2
Process index: 1
Local process index: 1
Device: cuda:1

Mixed precision type: bf16

06/22/2023 13:40:14 - INFO - __main__ - Distributed environment: DistributedType.FSDP  Backend: nccl
Num processes: 2
Process index: 0
Local process index: 0
Device: cuda:0

Mixed precision type: bf16

100%|██████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1341.32it/s]
06/22/2023 13:40:16 - WARNING - datasets.builder - Found cached dataset wikitext (/raid/sourab/.cache/huggingface/datasets/wikitext/wikitext-2-raw-v1/1.0.0/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126)
100%|██████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1424.21it/s]
loading configuration file config.json from cache at /raid/sourab/.cache/huggingface/models--EleutherAI--gpt-j-6b/snapshots/47e169305d2e8376be1d31e765533382721b2cc1/config.json
Model config GPTJConfig {
  "_name_or_path": "EleutherAI/gpt-j-6b",
  "activation_function": "gelu_new",
  "architectures": [
    "GPTJForCausalLM"
  ],
  "attn_pdrop": 0.0,
  "bos_token_id": 50256,
  "embd_pdrop": 0.0,
  "eos_token_id": 50256,
  "gradient_checkpointing": false,
  "initializer_range": 0.02,
  "layer_norm_epsilon": 1e-05,
  "model_type": "gptj",
  "n_embd": 4096,
  "n_head": 16,
  "n_inner": null,
  "n_layer": 28,
  "n_positions": 2048,
  "resid_pdrop": 0.0,
  "rotary": true,
  "rotary_dim": 64,
  "scale_attn_weights": true,
  "summary_activation": null,
  "summary_first_dropout": 0.1,
  "summary_proj_to_labels": true,
  "summary_type": "cls_index",
  "summary_use_proj": true,
  "task_specific_params": {
    "text-generation": {
      "do_sample": true,
      "max_length": 50,
      "temperature": 1.0
    }
  },
  "tie_word_embeddings": false,
  "tokenizer_class": "GPT2Tokenizer",
  "transformers_version": "4.31.0.dev0",
  "use_cache": true,
  "vocab_size": 50400
}

loading file vocab.json from cache at /raid/sourab/.cache/huggingface/models--EleutherAI--gpt-j-6b/snapshots/47e169305d2e8376be1d31e765533382721b2cc1/vocab.json
loading file merges.txt from cache at /raid/sourab/.cache/huggingface/models--EleutherAI--gpt-j-6b/snapshots/47e169305d2e8376be1d31e765533382721b2cc1/merges.txt
loading file tokenizer.json from cache at /raid/sourab/.cache/huggingface/models--EleutherAI--gpt-j-6b/snapshots/47e169305d2e8376be1d31e765533382721b2cc1/tokenizer.json
loading file added_tokens.json from cache at /raid/sourab/.cache/huggingface/models--EleutherAI--gpt-j-6b/snapshots/47e169305d2e8376be1d31e765533382721b2cc1/added_tokens.json
loading file special_tokens_map.json from cache at /raid/sourab/.cache/huggingface/models--EleutherAI--gpt-j-6b/snapshots/47e169305d2e8376be1d31e765533382721b2cc1/special_tokens_map.json
loading file tokenizer_config.json from cache at /raid/sourab/.cache/huggingface/models--EleutherAI--gpt-j-6b/snapshots/47e169305d2e8376be1d31e765533382721b2cc1/tokenizer_config.json
loading weights file pytorch_model.bin from cache at /raid/sourab/.cache/huggingface/models--EleutherAI--gpt-j-6b/snapshots/47e169305d2e8376be1d31e765533382721b2cc1/pytorch_model.bin
Generate config GenerationConfig {
  "_from_model_config": true,
  "bos_token_id": 50256,
  "eos_token_id": 50256,
  "transformers_version": "4.31.0.dev0"
}

All model checkpoint weights were used when initializing GPTJForCausalLM.

All the weights of GPTJForCausalLM were initialized from the model checkpoint at EleutherAI/gpt-j-6b.
If your task is similar to the task the model of the checkpoint was trained on, you can already use GPTJForCausalLM for predictions without further training.
Generation config file not found, using a generation config created from the model config.
06/22/2023 13:41:06 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /raid/sourab/.cache/huggingface/datasets/wikitext/wikitext-2-raw-v1/1.0.0/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126/cache-76793d46c8ad9166.arrow
06/22/2023 13:41:06 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /raid/sourab/.cache/huggingface/datasets/wikitext/wikitext-2-raw-v1/1.0.0/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126/cache-3fd6912b02345416.arrow
06/22/2023 13:41:06 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /raid/sourab/.cache/huggingface/datasets/wikitext/wikitext-2-raw-v1/1.0.0/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126/cache-4fe7c1e41fc39277.arrow
06/22/2023 13:41:06 - WARNING - __main__ - The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can override this default with `--block_size xxx`.
06/22/2023 13:41:06 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /raid/sourab/.cache/huggingface/datasets/wikitext/wikitext-2-raw-v1/1.0.0/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126/cache-b9b8b2fd6c69082c.arrow
06/22/2023 13:41:06 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /raid/sourab/.cache/huggingface/datasets/wikitext/wikitext-2-raw-v1/1.0.0/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126/cache-cf0b5700aab01e12.arrow
06/22/2023 13:41:06 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /raid/sourab/.cache/huggingface/datasets/wikitext/wikitext-2-raw-v1/1.0.0/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126/cache-99e8c4ce56ab7f5b.arrow
06/22/2023 13:41:07 - INFO - __main__ - Sample 1731 of the training set: {'input_ids': [5645, 286, 262, 7894, 27400, 1690, 1716, 12666, 422, 852, 17451, 17901, 319, 262, 2323, 764, 220, 198, 383, 4048, 318, 3538, 18876, 422, 262, 4257, 1058, 673, 468, 257, 517, 7135, 290, 1342, 2401, 276, 1182, 837, 607, 307, 461, 318, 40369, 290, 9823, 453, 2392, 837, 607, 6736, 290, 18216, 41408, 4833, 837, 607, 7405, 290, 3625, 517, 36808, 290, 11398, 680, 13791, 837, 290, 607, 7894, 9823, 453, 2392, 764, 2893, 607, 22802, 496, 9568, 318, 407, 845, 1180, 422, 326, 286, 262, 4257, 837, 262, 5680, 278, 318, 517, 11800, 837, 351, 1342, 7872, 290, 285, 1252, 1359, 764, 1375, 12444, 284, 4180, 517, 290, 307, 517, 8361, 621, 262, 4257, 618, 12118, 764, 317, 46282, 4048, 635, 468, 257, 50167, 8529, 319, 262, 6247, 4168, 286, 262, 19921, 764, 220, 198, 4525, 867, 1582, 24744, 837, 262, 479, 461, 41817, 468, 257, 4996, 286, 3848, 764, 1081, 880, 355, 262, 1489, 3150, 357, 766, 2174, 329, 257, 8296, 1267, 290, 442, 654, 286, 511, 31993, 3848, 837, 340, 481, 1690, 1341, 430, 668, 284, 5453, 663, 4067, 284, 584, 10087, 764, 220, 198, 383, 479, 461, 41817, 468, 257, 880, 2488, 12, 31, 4166, 2565, 286, 8508, 837, 543, 1224, 902, 663, 645, 310, 35735, 12263, 764, 632, 460, 28433, 1871, 16298, 4662, 981, 329, 3039, 837, 257, 9172, 2098, 329, 691, 530, 584, 1582, 10599, 4693, 764, 1881, 286, 262, 749, 8871, 9695, 286, 262, 479, 461, 41817, 318, 663, 15497, 290, 3665, 16298, 454, 837, 543, 468, 587, 3417, 355, 1276, 88, 764, 11259, 262, 479, 461, 41817, 705, 82, 880, 2488, 12, 31, 4166, 2565, 286, 8508, 837, 428, 21212, 743, 307, 257, 1919, 4607, 418, 570, 282, 764, 383, 8508, 1690, 21675, 23311, 284, 262, 5688, 9366, 1203, 479, 461, 41817, 764, 220, 198, 796, 796, 796, 28880, 9145, 796, 796, 796, 220, 198, 383, 18328, 286, 262, 479, 461, 41817, 24242, 422, 584, 1582, 24744, 287, 1811, 3033, 3917, 351, 5474, 17587, 764, 41039, 837, 340, 468, 262, 18197, 3585, 8539, 2546, 286, 597, 1582, 10599, 764, 6363, 8539, 27400, 389, 12238, 837, 517, 19273, 837, 290, 1342, 30372, 34546, 290, 423, 7380, 1233, 282, 42577, 5028, 284, 5793, 262, 27400, 1978, 764, 383, 26370, 388, 318, 1402, 290, 468, 257, 1877, 837, 19750, 328, 498, 885, 417, 290, 257, 34464, 599, 1437, 409, 759, 64, 764, 1081, 287, 584, 5474, 1203, 10087, 290, 617, 584, 5474, 276, 1582, 24744, 837, 262, 9230, 3129, 64, 318, 407, 43954, 475, 10874, 286, 257, 5166, 286, 537, 615, 2983, 9105, 287, 2800, 351, 1123, 1162, 330, 1868, 764, 1081, 287, 584, 5474, 1203, 10087, 837, 262, 9848, 1022, 262, 1162, 330, 1868, 290, 26370, 388, 318, 37287, 764, 383, 479, 461, 41817, 468, 257, 4025, 16176, 4703, 621, 584, 1582, 24744, 764, 383, 14793, 4402, 11945, 286, 262, 1232, 290, 3211, 389, 28719, 890, 290, 262, 1233, 282, 4847, 389, 28719, 1790, 764, 220, 198, 383, 279, 478, 6864, 1928, 3129, 1300, 286, 262, 479, 461, 41817, 318, 635, 9518, 416, 5474, 17587, 764, 383, 279, 478, 6864, 271, 290, 424, 1050, 330, 273, 10602, 485, 385, 12749, 389, 9257, 5322, 764, 383, 2632, 265, 363, 498, 271, 4327, 78, 890, 385, 468, 645, 7310, 8280, 19921, 764, 383, 26370, 420, 273, 10602, 485, 385, 318, 4327, 29823, 764, 1318, 318, 281, 7667, 38421, 934, 271, 1451, 11815, 537, 615, 13174, 271, 8280, 326, 318, 3917, 351, 262, 1588, 13833, 764, 220, 198, 796, 796, 39978, 290, 9172, 796, 796, 220, 198, 632, 2331, 326, 262, 479, 461, 41817, 784, 588, 867, 286, 968, 8936, 705, 82, 6512, 4693, 784, 468, 12572, 284, 22265, 281, 25047, 21404, 7685, 5901, 416, 2972, 4693, 286, 46103, 357, 262, 691, 1729, 2488, 12, 31, 16050, 23426, 6868, 284, 968, 8936, 389, 1115, 4693, 286, 1402, 19553, 1267, 764, 7413, 262, 10325, 286, 5384, 837, 262, 479, 461, 41817, 373, 9387, 3690, 262, 1115, 1388, 14807, 286, 968, 8936, 764, 632, 5615, 287, 257, 4996, 286, 35308, 837, 1390, 256, 1046, 735, 4447, 837, 27268, 4447, 290, 17475, 3006, 764, 632, 635, 30671, 17039, 837, 1390, 883, 13354, 416, 24573, 420, 283, 862, 357, 20254, 84, 837, 285, 1045, 72, 837, 479, 993, 1134, 378, 64, 837, 2006, 3301, 1267, 837, 307, 16672, 837, 256, 6909, 837, 290, 374, 1045, 764, 554, 23238, 585, 1044, 837, 3006, 286, 44128, 290, 13819, 16468, 351, 16935, 803, 290, 7272, 12658, 1780, 28459, 784, 884, 355, 1936, 7660, 837, 8237, 8396, 837, 24484, 6853, 837, 9732, 84, 837, 339, 12636, 837, 290, 2243, 4951, 5356, 784, 2627, 1900, 355, 366, 479, 461, 41817, 25476, 366, 764, 220, 198, 383, 479, 461, 41817, 318, 7525, 645, 310, 35735, 2162, 340, 686, 455, 82, 739, 3002, 287, 7150, 393, 319, 262, 2323, 1141, 262, 1110, 290, 6100, 1088, 663, 16771, 379, 1755, 764, 220, 198, 7486, 262, 479, 461, 41817, 2314, 6129, 837, 340, 318, 281, 6275, 5424, 527, 837, 41988, 284, 262, 12389, 82, 286, 262, 38760, 7150, 764, 632, 460, 635, 366, 41015, 366, 784, 31491, 416, 45583, 290, 14342, 663, 12098, 764, 554, 428, 835, 340, 743, 3067, 257, 1178, 18985, 357, 5695, 1267, 379, 281, 9848, 286, 1342, 621, 4153, 7370, 764, 220, 198, 11136, 2626, 262, 2694, 284, 6129, 837, 340, 468, 4166, 1913, 7405, 764, 15477, 318, 1690, 416, 835, 286, 257, 5801, 366, 48342, 2488, 12, 31, 588, 366, 308, 4548, 416, 543, 340, 460, 1445, 867, 23990, 764, 317, 4048, 468, 587, 6515, 1642, 734, 1441, 13229, 1123, 1755, 1141, 46282, 422, 607, 16343, 284, 257, 2057, 2723, 510, 284, 352, 10571, 357, 657, 2488, 13, 31, 718, 21504, 1267, 1497, 290, 262, 4257, 743, 2513, 422, 663, 1363, 2837, 284, 257, 31993, 13478, 510, 284, 642, 10571, 357, 513, 21504, 1267, 1497, 1141, 262, 31993, 1622, 357, 3267, 784, 3269, 1267, 764, 220, 198, 6960, 10087, 36941, 287, 711, 4330, 837, 290, 530, 6512, 481, 1690, 5793, 262, 7393, 286, 1194, 739, 663, 22531, 764, 383, 479, 461, 41817, 318, 11040, 416, 3450, 290, 468, 587, 1900, 284, 9427, 351, 5384, 764, 23702, 3085, 290, 11661], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'labels': [5645, 286, 262, 7894, 27400, 1690, 1716, 12666, 422, 852, 17451, 17901, 319, 262, 2323, 764, 220, 198, 383, 4048, 318, 3538, 18876, 422, 262, 4257, 1058, 673, 468, 257, 517, 7135, 290, 1342, 2401, 276, 1182, 837, 607, 307, 461, 318, 40369, 290, 9823, 453, 2392, 837, 607, 6736, 290, 18216, 41408, 4833, 837, 607, 7405, 290, 3625, 517, 36808, 290, 11398, 680, 13791, 837, 290, 607, 7894, 9823, 453, 2392, 764, 2893, 607, 22802, 496, 9568, 318, 407, 845, 1180, 422, 326, 286, 262, 4257, 837, 262, 5680, 278, 318, 517, 11800, 837, 351, 1342, 7872, 290, 285, 1252, 1359, 764, 1375, 12444, 284, 4180, 517, 290, 307, 517, 8361, 621, 262, 4257, 618, 12118, 764, 317, 46282, 4048, 635, 468, 257, 50167, 8529, 319, 262, 6247, 4168, 286, 262, 19921, 764, 220, 198, 4525, 867, 1582, 24744, 837, 262, 479, 461, 41817, 468, 257, 4996, 286, 3848, 764, 1081, 880, 355, 262, 1489, 3150, 357, 766, 2174, 329, 257, 8296, 1267, 290, 442, 654, 286, 511, 31993, 3848, 837, 340, 481, 1690, 1341, 430, 668, 284, 5453, 663, 4067, 284, 584, 10087, 764, 220, 198, 383, 479, 461, 41817, 468, 257, 880, 2488, 12, 31, 4166, 2565, 286, 8508, 837, 543, 1224, 902, 663, 645, 310, 35735, 12263, 764, 632, 460, 28433, 1871, 16298, 4662, 981, 329, 3039, 837, 257, 9172, 2098, 329, 691, 530, 584, 1582, 10599, 4693, 764, 1881, 286, 262, 749, 8871, 9695, 286, 262, 479, 461, 41817, 318, 663, 15497, 290, 3665, 16298, 454, 837, 543, 468, 587, 3417, 355, 1276, 88, 764, 11259, 262, 479, 461, 41817, 705, 82, 880, 2488, 12, 31, 4166, 2565, 286, 8508, 837, 428, 21212, 743, 307, 257, 1919, 4607, 418, 570, 282, 764, 383, 8508, 1690, 21675, 23311, 284, 262, 5688, 9366, 1203, 479, 461, 41817, 764, 220, 198, 796, 796, 796, 28880, 9145, 796, 796, 796, 220, 198, 383, 18328, 286, 262, 479, 461, 41817, 24242, 422, 584, 1582, 24744, 287, 1811, 3033, 3917, 351, 5474, 17587, 764, 41039, 837, 340, 468, 262, 18197, 3585, 8539, 2546, 286, 597, 1582, 10599, 764, 6363, 8539, 27400, 389, 12238, 837, 517, 19273, 837, 290, 1342, 30372, 34546, 290, 423, 7380, 1233, 282, 42577, 5028, 284, 5793, 262, 27400, 1978, 764, 383, 26370, 388, 318, 1402, 290, 468, 257, 1877, 837, 19750, 328, 498, 885, 417, 290, 257, 34464, 599, 1437, 409, 759, 64, 764, 1081, 287, 584, 5474, 1203, 10087, 290, 617, 584, 5474, 276, 1582, 24744, 837, 262, 9230, 3129, 64, 318, 407, 43954, 475, 10874, 286, 257, 5166, 286, 537, 615, 2983, 9105, 287, 2800, 351, 1123, 1162, 330, 1868, 764, 1081, 287, 584, 5474, 1203, 10087, 837, 262, 9848, 1022, 262, 1162, 330, 1868, 290, 26370, 388, 318, 37287, 764, 383, 479, 461, 41817, 468, 257, 4025, 16176, 4703, 621, 584, 1582, 24744, 764, 383, 14793, 4402, 11945, 286, 262, 1232, 290, 3211, 389, 28719, 890, 290, 262, 1233, 282, 4847, 389, 28719, 1790, 764, 220, 198, 383, 279, 478, 6864, 1928, 3129, 1300, 286, 262, 479, 461, 41817, 318, 635, 9518, 416, 5474, 17587, 764, 383, 279, 478, 6864, 271, 290, 424, 1050, 330, 273, 10602, 485, 385, 12749, 389, 9257, 5322, 764, 383, 2632, 265, 363, 498, 271, 4327, 78, 890, 385, 468, 645, 7310, 8280, 19921, 764, 383, 26370, 420, 273, 10602, 485, 385, 318, 4327, 29823, 764, 1318, 318, 281, 7667, 38421, 934, 271, 1451, 11815, 537, 615, 13174, 271, 8280, 326, 318, 3917, 351, 262, 1588, 13833, 764, 220, 198, 796, 796, 39978, 290, 9172, 796, 796, 220, 198, 632, 2331, 326, 262, 479, 461, 41817, 784, 588, 867, 286, 968, 8936, 705, 82, 6512, 4693, 784, 468, 12572, 284, 22265, 281, 25047, 21404, 7685, 5901, 416, 2972, 4693, 286, 46103, 357, 262, 691, 1729, 2488, 12, 31, 16050, 23426, 6868, 284, 968, 8936, 389, 1115, 4693, 286, 1402, 19553, 1267, 764, 7413, 262, 10325, 286, 5384, 837, 262, 479, 461, 41817, 373, 9387, 3690, 262, 1115, 1388, 14807, 286, 968, 8936, 764, 632, 5615, 287, 257, 4996, 286, 35308, 837, 1390, 256, 1046, 735, 4447, 837, 27268, 4447, 290, 17475, 3006, 764, 632, 635, 30671, 17039, 837, 1390, 883, 13354, 416, 24573, 420, 283, 862, 357, 20254, 84, 837, 285, 1045, 72, 837, 479, 993, 1134, 378, 64, 837, 2006, 3301, 1267, 837, 307, 16672, 837, 256, 6909, 837, 290, 374, 1045, 764, 554, 23238, 585, 1044, 837, 3006, 286, 44128, 290, 13819, 16468, 351, 16935, 803, 290, 7272, 12658, 1780, 28459, 784, 884, 355, 1936, 7660, 837, 8237, 8396, 837, 24484, 6853, 837, 9732, 84, 837, 339, 12636, 837, 290, 2243, 4951, 5356, 784, 2627, 1900, 355, 366, 479, 461, 41817, 25476, 366, 764, 220, 198, 383, 479, 461, 41817, 318, 7525, 645, 310, 35735, 2162, 340, 686, 455, 82, 739, 3002, 287, 7150, 393, 319, 262, 2323, 1141, 262, 1110, 290, 6100, 1088, 663, 16771, 379, 1755, 764, 220, 198, 7486, 262, 479, 461, 41817, 2314, 6129, 837, 340, 318, 281, 6275, 5424, 527, 837, 41988, 284, 262, 12389, 82, 286, 262, 38760, 7150, 764, 632, 460, 635, 366, 41015, 366, 784, 31491, 416, 45583, 290, 14342, 663, 12098, 764, 554, 428, 835, 340, 743, 3067, 257, 1178, 18985, 357, 5695, 1267, 379, 281, 9848, 286, 1342, 621, 4153, 7370, 764, 220, 198, 11136, 2626, 262, 2694, 284, 6129, 837, 340, 468, 4166, 1913, 7405, 764, 15477, 318, 1690, 416, 835, 286, 257, 5801, 366, 48342, 2488, 12, 31, 588, 366, 308, 4548, 416, 543, 340, 460, 1445, 867, 23990, 764, 317, 4048, 468, 587, 6515, 1642, 734, 1441, 13229, 1123, 1755, 1141, 46282, 422, 607, 16343, 284, 257, 2057, 2723, 510, 284, 352, 10571, 357, 657, 2488, 13, 31, 718, 21504, 1267, 1497, 290, 262, 4257, 743, 2513, 422, 663, 1363, 2837, 284, 257, 31993, 13478, 510, 284, 642, 10571, 357, 513, 21504, 1267, 1497, 1141, 262, 31993, 1622, 357, 3267, 784, 3269, 1267, 764, 220, 198, 6960, 10087, 36941, 287, 711, 4330, 837, 290, 530, 6512, 481, 1690, 5793, 262, 7393, 286, 1194, 739, 663, 22531, 764, 383, 479, 461, 41817, 318, 11040, 416, 3450, 290, 468, 587, 1900, 284, 9427, 351, 5384, 764, 23702, 3085, 290, 11661]}.
06/22/2023 13:41:07 - INFO - __main__ - Sample 1429 of the training set: {'input_ids': [475, 26532, 10872, 5081, 366, 775, 705, 303, 2722, 645, 2897, 422, 11761, 393, 597, 584, 3430, 393, 2137, 366, 764, 2102, 837, 257, 1178, 1528, 1568, 837, 649, 3136, 5220, 5234, 25125, 3713, 550, 4987, 257, 1730, 351, 11761, 329, 27663, 2162, 262, 6838, 373, 7440, 8167, 284, 307, 4248, 1679, 1510, 351, 20894, 16364, 29690, 3867, 284, 5234, 25125, 3713, 287, 257, 4553, 4351, 1730, 764, 1550, 1542, 2795, 837, 5234, 25125, 3713, 3414, 257, 1730, 284, 1051, 9500, 1114, 75, 21162, 422, 9757, 283, 5305, 837, 287, 644, 373, 1775, 355, 257, 1445, 284, 6330, 27663, 878, 465, 12928, 2627, 1743, 764, 1550, 362, 2901, 837, 340, 373, 2098, 326, 27663, 550, 2005, 1790, 257, 14600, 284, 6129, 736, 284, 14708, 284, 2457, 786, 262, 1445, 284, 11761, 764, 383, 1708, 1110, 837, 27663, 3804, 257, 3315, 379, 11761, 705, 82, 5616, 3822, 3047, 2323, 764, 679, 2714, 257, 1803, 4495, 287, 14708, 319, 604, 2901, 284, 8406, 33458, 284, 262, 5234, 25125, 3713, 3296, 837, 878, 14339, 465, 1445, 284, 11761, 319, 257, 2237, 2488, 12, 31, 614, 2775, 764, 383, 4351, 6838, 373, 262, 4511, 287, 11761, 705, 82, 2106, 764, 554, 2805, 3648, 837, 4706, 31918, 3932, 8836, 660, 89, 5081, 287, 281, 2720, 351, 383, 3782, 326, 27663, 373, 9477, 329, 1088, 4248, 1160, 1510, 837, 3584, 428, 3785, 2753, 656, 1848, 16364, 29690, 705, 82, 1445, 284, 5234, 25125, 3713, 764, 220, 198, 796, 796, 796, 11761, 796, 796, 796, 220, 198, 796, 796, 796, 796, 4343, 784, 8487, 1622, 796, 796, 796, 796, 220, 198, 27663, 925, 465, 7606, 8886, 329, 11761, 1028, 33644, 25018, 287, 257, 362, 784, 352, 1592, 319, 1367, 2932, 4343, 764, 679, 925, 465, 717, 5585, 287, 262, 40858, 6662, 4041, 1440, 1528, 1613, 465, 717, 2854, 287, 257, 352, 784, 657, 5373, 625, 309, 2852, 1076, 837, 706, 2406, 319, 355, 257, 9225, 400, 5664, 15373, 764, 2399, 717, 9952, 4041, 3061, 1625, 319, 465, 44303, 8886, 319, 678, 2932, 4343, 837, 287, 262, 1467, 400, 5664, 287, 257, 352, 784, 352, 3197, 1028, 12147, 764, 2399, 717, 6877, 2488, 12, 31, 6908, 1625, 287, 257, 604, 784, 362, 5373, 625, 11725, 287, 262, 4041, 5454, 319, 1679, 2693, 4343, 837, 351, 477, 286, 465, 4661, 2406, 287, 262, 1218, 2063, 764, 2399, 717, 4661, 287, 262, 6662, 4041, 1625, 319, 465, 2368, 5585, 287, 262, 5449, 355, 11761, 4405, 4347, 78, 604, 784, 352, 319, 2579, 3389, 4343, 837, 355, 339, 7781, 5403, 764, 220, 198, 27663, 373, 3706, 262, 9952, 4041, 7853, 286, 262, 16061, 329, 3945, 3648, 837, 1141, 543, 339, 7781, 1440, 4661, 287, 1440, 11057, 837, 1390, 257, 6877, 2488, 12, 31, 6908, 1028, 46050, 65, 740, 319, 2242, 3945, 3648, 764, 770, 6877, 2488, 12, 31, 6908, 290, 1194, 287, 257, 604, 784, 657, 5373, 625, 2688, 4345, 1578, 319, 642, 2805, 3648, 4001, 339, 2627, 262, 717, 11761, 2137, 1201, 3619, 8528, 647, 287, 3389, 22717, 284, 4776, 257, 6877, 2488, 12, 31, 6908, 287, 25175, 1363, 7466, 764, 11450, 287, 2805, 837, 706, 339, 7781, 257, 6298, 400, 2488, 12, 31, 5664, 13639, 1028, 11725, 379, 44303, 837, 5033, 262, 717, 11761, 2137, 1201, 34855, 33693, 287, 262, 8735, 784, 9907, 1622, 284, 4776, 1160, 4652, 4661, 287, 257, 1622, 764, 554, 3035, 837, 339, 7781, 1194, 6662, 4041, 3061, 837, 428, 640, 1028, 13837, 287, 262, 3860, 2488, 12, 31, 2457, 1218, 1232, 837, 355, 11761, 6190, 284, 262, 10663, 2488, 12, 31, 2457, 764, 770, 3061, 1718, 683, 4291, 2808, 4661, 329, 262, 4343, 784, 8487, 1622, 287, 477, 24174, 837, 39097, 278, 3899, 22605, 705, 82, 2614, 1700, 329, 4661, 287, 257, 1622, 764, 1550, 1367, 3035, 3648, 837, 340, 373, 3414, 27663, 550, 925, 257, 2237, 2488, 12, 31, 582, 1790, 4868, 329, 262, 350, 7708, 13094, 705, 7853, 286, 262, 6280, 5764, 837, 543, 373, 4191, 1839, 416, 24568, 10115, 36309, 286, 9502, 1578, 764, 383, 7897, 3230, 373, 635, 19332, 329, 262, 350, 7708, 6960, 7853, 286, 262, 6280, 11289, 837, 543, 373, 1839, 416, 327, 3798, 376, 24247, 65, 2301, 292, 286, 13837, 290, 373, 3706, 287, 262, 350, 7708, 4816, 286, 262, 6280, 764, 554, 1737, 837, 339, 5201, 1218, 284, 36309, 329, 262, 376, 15543, 9957, 263, 286, 262, 6280, 5764, 764, 220, 198, 1550, 604, 1737, 3648, 837, 27663, 7781, 257, 7632, 400, 2488, 12, 31, 5664, 8464, 1028, 9502, 2254, 837, 543, 1602, 4262, 262, 12785, 44303, 4652, 3061, 1700, 286, 3624, 1830, 900, 416, 13637, 12937, 764, 2293, 9689, 465, 1987, 400, 4652, 3061, 287, 262, 2457, 983, 286, 262, 1622, 837, 257, 362, 784, 657, 1592, 1028, 24272, 41239, 14225, 837, 339, 900, 257, 649, 1700, 329, 262, 749, 28892, 3215, 3061, 30664, 287, 257, 8886, 1622, 287, 4492, 837, 39097, 278, 11667, 463, 5719, 399, 396, 417, 305, 726, 705, 82, 2242, 4661, 764, 679, 4444, 262, 1622, 287, 6466, 1218, 1295, 351, 32390, 1215, 1765, 323, 273, 287, 262, 3234, 329, 262, 9952, 4041, 10861, 6297, 764, 27663, 373, 2426, 284, 2056, 13367, 326, 12147, 547, 4684, 284, 1414, 4248, 2026, 1510, 284, 1051, 683, 475, 27663, 7082, 416, 2282, 340, 561, 307, 366, 867, 812, 366, 878, 339, 1364, 11761, 764, 11761, 763, 2488, 12, 31, 4870, 4186, 31750, 635, 2469, 515, 262, 2126, 286, 257, 4351, 837, 2282, 339, 561, 407, 1249, 27663, 284, 2666, 262, 3430, 379, 597, 2756, 764, 220, 198, 796, 796, 796, 796, 3648, 784, 7769, 1622, 796, 796, 796, 796, 220, 198, 27663, 925, 257, 9689, 923, 284, 262, 3648, 784, 7769, 9952, 4041, 1622, 351, 257, 1679, 12699, 2823, 656, 262, 4220, 826, 2488, 12, 31, 1021, 5228, 1497, 379, 35706, 837, 543, 373, 262, 691, 3061, 287, 257, 352, 784, 657, 1592, 319, 1467, 2932, 3648, 764, 679, 6989, 257, 36744, 11626, 287, 257, 657, 784, 657, 3197, 1028, 33644, 25018, 837, 543, 561, 1394, 683, 503, 329, 734, 284, 1115, 2745, 764, 27663, 925, 465, 1441, 287, 257, 362, 784, 352, 5373, 1028, 45996, 8270, 287, 262, 6662, 4041, 290, 1816, 319, 284, 4776, 734, 4661], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'labels': [475, 26532, 10872, 5081, 366, 775, 705, 303, 2722, 645, 2897, 422, 11761, 393, 597, 584, 3430, 393, 2137, 366, 764, 2102, 837, 257, 1178, 1528, 1568, 837, 649, 3136, 5220, 5234, 25125, 3713, 550, 4987, 257, 1730, 351, 11761, 329, 27663, 2162, 262, 6838, 373, 7440, 8167, 284, 307, 4248, 1679, 1510, 351, 20894, 16364, 29690, 3867, 284, 5234, 25125, 3713, 287, 257, 4553, 4351, 1730, 764, 1550, 1542, 2795, 837, 5234, 25125, 3713, 3414, 257, 1730, 284, 1051, 9500, 1114, 75, 21162, 422, 9757, 283, 5305, 837, 287, 644, 373, 1775, 355, 257, 1445, 284, 6330, 27663, 878, 465, 12928, 2627, 1743, 764, 1550, 362, 2901, 837, 340, 373, 2098, 326, 27663, 550, 2005, 1790, 257, 14600, 284, 6129, 736, 284, 14708, 284, 2457, 786, 262, 1445, 284, 11761, 764, 383, 1708, 1110, 837, 27663, 3804, 257, 3315, 379, 11761, 705, 82, 5616, 3822, 3047, 2323, 764, 679, 2714, 257, 1803, 4495, 287, 14708, 319, 604, 2901, 284, 8406, 33458, 284, 262, 5234, 25125, 3713, 3296, 837, 878, 14339, 465, 1445, 284, 11761, 319, 257, 2237, 2488, 12, 31, 614, 2775, 764, 383, 4351, 6838, 373, 262, 4511, 287, 11761, 705, 82, 2106, 764, 554, 2805, 3648, 837, 4706, 31918, 3932, 8836, 660, 89, 5081, 287, 281, 2720, 351, 383, 3782, 326, 27663, 373, 9477, 329, 1088, 4248, 1160, 1510, 837, 3584, 428, 3785, 2753, 656, 1848, 16364, 29690, 705, 82, 1445, 284, 5234, 25125, 3713, 764, 220, 198, 796, 796, 796, 11761, 796, 796, 796, 220, 198, 796, 796, 796, 796, 4343, 784, 8487, 1622, 796, 796, 796, 796, 220, 198, 27663, 925, 465, 7606, 8886, 329, 11761, 1028, 33644, 25018, 287, 257, 362, 784, 352, 1592, 319, 1367, 2932, 4343, 764, 679, 925, 465, 717, 5585, 287, 262, 40858, 6662, 4041, 1440, 1528, 1613, 465, 717, 2854, 287, 257, 352, 784, 657, 5373, 625, 309, 2852, 1076, 837, 706, 2406, 319, 355, 257, 9225, 400, 5664, 15373, 764, 2399, 717, 9952, 4041, 3061, 1625, 319, 465, 44303, 8886, 319, 678, 2932, 4343, 837, 287, 262, 1467, 400, 5664, 287, 257, 352, 784, 352, 3197, 1028, 12147, 764, 2399, 717, 6877, 2488, 12, 31, 6908, 1625, 287, 257, 604, 784, 362, 5373, 625, 11725, 287, 262, 4041, 5454, 319, 1679, 2693, 4343, 837, 351, 477, 286, 465, 4661, 2406, 287, 262, 1218, 2063, 764, 2399, 717, 4661, 287, 262, 6662, 4041, 1625, 319, 465, 2368, 5585, 287, 262, 5449, 355, 11761, 4405, 4347, 78, 604, 784, 352, 319, 2579, 3389, 4343, 837, 355, 339, 7781, 5403, 764, 220, 198, 27663, 373, 3706, 262, 9952, 4041, 7853, 286, 262, 16061, 329, 3945, 3648, 837, 1141, 543, 339, 7781, 1440, 4661, 287, 1440, 11057, 837, 1390, 257, 6877, 2488, 12, 31, 6908, 1028, 46050, 65, 740, 319, 2242, 3945, 3648, 764, 770, 6877, 2488, 12, 31, 6908, 290, 1194, 287, 257, 604, 784, 657, 5373, 625, 2688, 4345, 1578, 319, 642, 2805, 3648, 4001, 339, 2627, 262, 717, 11761, 2137, 1201, 3619, 8528, 647, 287, 3389, 22717, 284, 4776, 257, 6877, 2488, 12, 31, 6908, 287, 25175, 1363, 7466, 764, 11450, 287, 2805, 837, 706, 339, 7781, 257, 6298, 400, 2488, 12, 31, 5664, 13639, 1028, 11725, 379, 44303, 837, 5033, 262, 717, 11761, 2137, 1201, 34855, 33693, 287, 262, 8735, 784, 9907, 1622, 284, 4776, 1160, 4652, 4661, 287, 257, 1622, 764, 554, 3035, 837, 339, 7781, 1194, 6662, 4041, 3061, 837, 428, 640, 1028, 13837, 287, 262, 3860, 2488, 12, 31, 2457, 1218, 1232, 837, 355, 11761, 6190, 284, 262, 10663, 2488, 12, 31, 2457, 764, 770, 3061, 1718, 683, 4291, 2808, 4661, 329, 262, 4343, 784, 8487, 1622, 287, 477, 24174, 837, 39097, 278, 3899, 22605, 705, 82, 2614, 1700, 329, 4661, 287, 257, 1622, 764, 1550, 1367, 3035, 3648, 837, 340, 373, 3414, 27663, 550, 925, 257, 2237, 2488, 12, 31, 582, 1790, 4868, 329, 262, 350, 7708, 13094, 705, 7853, 286, 262, 6280, 5764, 837, 543, 373, 4191, 1839, 416, 24568, 10115, 36309, 286, 9502, 1578, 764, 383, 7897, 3230, 373, 635, 19332, 329, 262, 350, 7708, 6960, 7853, 286, 262, 6280, 11289, 837, 543, 373, 1839, 416, 327, 3798, 376, 24247, 65, 2301, 292, 286, 13837, 290, 373, 3706, 287, 262, 350, 7708, 4816, 286, 262, 6280, 764, 554, 1737, 837, 339, 5201, 1218, 284, 36309, 329, 262, 376, 15543, 9957, 263, 286, 262, 6280, 5764, 764, 220, 198, 1550, 604, 1737, 3648, 837, 27663, 7781, 257, 7632, 400, 2488, 12, 31, 5664, 8464, 1028, 9502, 2254, 837, 543, 1602, 4262, 262, 12785, 44303, 4652, 3061, 1700, 286, 3624, 1830, 900, 416, 13637, 12937, 764, 2293, 9689, 465, 1987, 400, 4652, 3061, 287, 262, 2457, 983, 286, 262, 1622, 837, 257, 362, 784, 657, 1592, 1028, 24272, 41239, 14225, 837, 339, 900, 257, 649, 1700, 329, 262, 749, 28892, 3215, 3061, 30664, 287, 257, 8886, 1622, 287, 4492, 837, 39097, 278, 11667, 463, 5719, 399, 396, 417, 305, 726, 705, 82, 2242, 4661, 764, 679, 4444, 262, 1622, 287, 6466, 1218, 1295, 351, 32390, 1215, 1765, 323, 273, 287, 262, 3234, 329, 262, 9952, 4041, 10861, 6297, 764, 27663, 373, 2426, 284, 2056, 13367, 326, 12147, 547, 4684, 284, 1414, 4248, 2026, 1510, 284, 1051, 683, 475, 27663, 7082, 416, 2282, 340, 561, 307, 366, 867, 812, 366, 878, 339, 1364, 11761, 764, 11761, 763, 2488, 12, 31, 4870, 4186, 31750, 635, 2469, 515, 262, 2126, 286, 257, 4351, 837, 2282, 339, 561, 407, 1249, 27663, 284, 2666, 262, 3430, 379, 597, 2756, 764, 220, 198, 796, 796, 796, 796, 3648, 784, 7769, 1622, 796, 796, 796, 796, 220, 198, 27663, 925, 257, 9689, 923, 284, 262, 3648, 784, 7769, 9952, 4041, 1622, 351, 257, 1679, 12699, 2823, 656, 262, 4220, 826, 2488, 12, 31, 1021, 5228, 1497, 379, 35706, 837, 543, 373, 262, 691, 3061, 287, 257, 352, 784, 657, 1592, 319, 1467, 2932, 3648, 764, 679, 6989, 257, 36744, 11626, 287, 257, 657, 784, 657, 3197, 1028, 33644, 25018, 837, 543, 561, 1394, 683, 503, 329, 734, 284, 1115, 2745, 764, 27663, 925, 465, 1441, 287, 257, 362, 784, 352, 5373, 1028, 45996, 8270, 287, 262, 6662, 4041, 290, 1816, 319, 284, 4776, 734, 4661]}.
06/22/2023 13:41:07 - INFO - __main__ - Sample 1410 of the training set: {'input_ids': [3226, 262, 734, 10756, 1127, 837, 262, 2284, 4563, 3568, 1266, 1498, 284, 14561, 257, 11622, 15974, 21404, 290, 4833, 15974, 764, 220, 198, 1081, 351, 597, 30135, 379, 393, 1474, 262, 1353, 286, 663, 2057, 6333, 837, 262, 2284, 4563, 12751, 262, 3265, 286, 15974, 4693, 764, 14322, 341, 416, 2284, 25821, 468, 587, 6692, 284, 2458, 287, 262, 4693, 5022, 286, 20096, 287, 257, 3814, 764, 1114, 1672, 837, 257, 2050, 287, 3517, 9309, 6515, 326, 262, 3265, 286, 285, 2261, 20096, 837, 257, 19344, 2284, 4563, 15974, 837, 373, 18080, 981, 262, 3265, 286, 262, 1342, 6777, 15974, 276, 2488, 12, 31, 2402, 2330, 2488, 12, 31, 256, 6255, 20096, 373, 3649, 764, 383, 10930, 5451, 1667, 27926, 837, 281, 22700, 4693, 42560, 284, 530, 3814, 286, 15715, 2284, 4563, 3265, 837, 468, 1775, 11832, 3146, 2233, 284, 2284, 4563, 290, 12768, 17481, 2747, 341, 764, 15933, 837, 612, 318, 257, 40757, 1245, 319, 262, 3081, 286, 20096, 9684, 416, 279, 7487, 2747, 341, 764, 220, 198, 554, 262, 8372, 636, 286, 2520, 2253, 837, 262, 279, 7487, 318, 257, 1353, 1241, 30135, 326, 468, 6856, 262, 3265, 286, 915, 272, 10602, 290, 584, 4693, 1201, 44741, 1661, 764, 220, 198, 796, 796, 6707, 40637, 796, 796, 220, 198, 317, 279, 388, 499, 446, 318, 257, 14554, 5044, 7186, 422, 257, 6441, 1022, 257, 2284, 4563, 290, 257, 443, 15478, 764, 7683, 5621, 286, 777, 45456, 547, 33592, 287, 262, 2739, 31982, 82, 290, 1903, 21489, 82, 416, 8124, 367, 11286, 27343, 379, 465, 5044, 3952, 287, 32526, 837, 4486, 764, 4042, 750, 407, 3151, 28003, 764, 1881, 286, 777, 373, 8155, 287, 46244, 416, 11307, 21980, 764, 317, 2092, 14554, 287, 11307, 21980, 8155, 422, 367, 11286, 27343, 373, 257, 3272, 1022, 257, 4257, 443, 15478, 290, 257, 4048, 279, 7487, 764, 32526, 21980, 705, 82, 31674, 373, 262, 9575, 27356, 837, 262, 530, 287, 262, 2042, 2488, 12, 31, 290, 2488, 12, 31, 2330, 4590, 837, 3735, 6083, 416, 257, 279, 7487, 33592, 284, 281, 3942, 443, 15478, 408, 764, 220, 198, 10127, 4642, 284, 257, 4048, 279, 7487, 285, 515, 284, 257, 4257, 443, 15478, 837, 393, 284, 257, 4257, 279, 7487, 285, 515, 284, 257, 4048, 443, 15478, 837, 279, 388, 499, 1371, 16955, 257, 1296, 286, 24603, 1042, 764, 5845, 2098, 6348, 284, 691, 2063, 262, 2546, 286, 262, 3397, 764, 1119, 423, 257, 279, 7487, 2488, 12, 31, 588, 890, 1767, 357, 27111, 284, 262, 21755, 837, 475, 19032, 12238, 621, 2035, 2560, 1267, 837, 475, 1790, 7405, 764, 383, 13209, 318, 2972, 306, 3417, 355, 44039, 837, 256, 3832, 88, 393, 13791, 680, 351, 7586, 837, 7721, 14930, 393, 366, 24887, 366, 686, 2617, 4879, 764, 220, 198, 796, 796, 23702, 3722, 796, 796, 220, 198, 383, 2159, 23702, 4479, 357, 314, 9598, 45, 1267, 3058, 8341, 262, 2284, 4563, 355, 257, 366, 1551, 2328, 366, 4693, 764, 383, 2284, 4563, 318, 17153, 739, 30378, 314, 286, 262, 11680, 319, 4037, 9601, 287, 5268, 19041, 28540, 286, 6183, 376, 32837, 290, 4432, 64, 357, 327, 2043, 1546, 1267, 837, 14837, 5293, 3230, 3292, 287, 27569, 393, 3354, 764, 220, 198, 554, 262, 1578, 1829, 7627, 286, 262, 13797, 5866, 837, 262, 691, 47001, 1900, 2284, 4563, 3265, 318, 262, 4744, 15857, 372, 764, 14303, 2813, 837, 262, 1578, 1829, 13388, 290, 18006, 4809, 357, 1294, 37, 19416, 1267, 8018, 1111, 281, 8345, 2284, 4563, 357, 4752, 284, 307, 257, 850, 35448, 416, 617, 837, 6699, 416, 1854, 1267, 290, 262, 4744, 15857, 372, 837, 1527, 1284, 4800, 739, 262, 5268, 19041, 28540, 2191, 764, 16272, 1687, 40036, 4773, 423, 14707, 1111, 1486, 602, 656, 262, 2258, 1605, 2284, 4563, 837, 351, 8345, 393, 4744, 850, 35448, 407, 8018, 837, 981, 257, 850, 35448, 22566, 3793, 8018, 416, 617, 14903, 5519, 764, 554, 5816, 262, 12395, 954, 329, 262, 4744, 850, 2488, 12, 31, 3265, 373, 10083, 3925, 764, 554, 2805, 2813, 837, 262, 1294, 37, 19416, 6875, 262, 8345, 2284, 4563, 28881, 764, 2080, 262, 1687, 40036, 13479, 546, 663, 6224, 355, 257, 850, 35448, 355, 880, 355, 262, 5885, 286, 7627, 904, 13472, 286, 2284, 25821, 422, 262, 8830, 2837, 837, 262, 2426, 3793, 1280, 764, 220, 198, 770, 13479, 468, 587, 8018, 416, 5398, 4773, 764, 383, 5398, 2717, 4086, 1444, 4606, 319, 262, 12678, 286, 5268, 19041, 18006, 287, 3340, 3965, 663, 1459, 1366, 355, 366, 19022, 366, 284, 3197, 13242, 5115, 262, 10183, 2284, 4563, 705, 82, 9441, 837, 290, 1139, 319, 663, 5313, 2524, 366, 7945, 867, 36242, 287, 262, 1613, 734, 4647, 422, 10183, 3340, 837, 612, 389, 19022, 1366, 284, 13446, 262, 1687, 30565, 393, 8333, 257, 3722, 284, 428, 2284, 4563, 764, 366, 43970, 6409, 2098, 36242, 287, 10553, 837, 14778, 837, 968, 32211, 290, 17711, 32586, 837, 340, 468, 587, 531, 326, 262, 2370, 318, 15861, 5731, 1058, 366, 764, 764, 764, 612, 743, 407, 307, 257, 7310, 705, 10183, 705, 850, 35448, 837, 290, 617, 36242, 743, 307, 286, 13537, 17252, 764, 366, 220, 198, 383, 2284, 4563, 318, 635, 6861, 1973, 881, 286, 262, 1334, 286, 663, 2837, 764, 1081, 286, 8235, 837, 2284, 4563, 10988, 373, 12244, 287, 16519, 837, 7595, 837, 38496, 837, 17456, 837, 21291, 837, 18133, 31656, 837, 4141, 1962, 7484, 837, 32183, 837, 32982, 837, 38252, 837, 23519, 837, 47268, 323, 837, 4198, 259, 480, 837, 16666, 837, 290, 36421, 764, 383, 3797, 550, 645, 2098, 2742, 4800, 287, 25794, 837, 2574, 26482, 837, 290, 13145, 2271, 764, 3310, 4817, 2284, 4563, 10988, 318, 991, 2219, 287, 262, 1578, 1829, 290, 3340, 837, 3584, 484, 389, 6861, 422, 477, 10988, 287, 262, 19760, 261, 2162, 340, 318, 10431, 287, 790, 471, 13, 50, 13, 1181, 422, 262, 24534, 21124, 284, 262, 8211, 10692, 837, 351, 262, 6631, 286, 3442, 764, 3936, 318, 262, 691, 1181, 287, 262, 1578, 1829, 351, 257, 13971, 3265, 286, 2284, 25821, 326, 857, 407, 1805, 326, 3265, 287, 617, 835, 764, 554, 3936, 837, 2284, 25821, 389, 5610, 355, 36212, 15599, 290, 597, 1048, 4769, 257, 10988, 393, 257, 43338, 8749, 460, 1494], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'labels': [3226, 262, 734, 10756, 1127, 837, 262, 2284, 4563, 3568, 1266, 1498, 284, 14561, 257, 11622, 15974, 21404, 290, 4833, 15974, 764, 220, 198, 1081, 351, 597, 30135, 379, 393, 1474, 262, 1353, 286, 663, 2057, 6333, 837, 262, 2284, 4563, 12751, 262, 3265, 286, 15974, 4693, 764, 14322, 341, 416, 2284, 25821, 468, 587, 6692, 284, 2458, 287, 262, 4693, 5022, 286, 20096, 287, 257, 3814, 764, 1114, 1672, 837, 257, 2050, 287, 3517, 9309, 6515, 326, 262, 3265, 286, 285, 2261, 20096, 837, 257, 19344, 2284, 4563, 15974, 837, 373, 18080, 981, 262, 3265, 286, 262, 1342, 6777, 15974, 276, 2488, 12, 31, 2402, 2330, 2488, 12, 31, 256, 6255, 20096, 373, 3649, 764, 383, 10930, 5451, 1667, 27926, 837, 281, 22700, 4693, 42560, 284, 530, 3814, 286, 15715, 2284, 4563, 3265, 837, 468, 1775, 11832, 3146, 2233, 284, 2284, 4563, 290, 12768, 17481, 2747, 341, 764, 15933, 837, 612, 318, 257, 40757, 1245, 319, 262, 3081, 286, 20096, 9684, 416, 279, 7487, 2747, 341, 764, 220, 198, 554, 262, 8372, 636, 286, 2520, 2253, 837, 262, 279, 7487, 318, 257, 1353, 1241, 30135, 326, 468, 6856, 262, 3265, 286, 915, 272, 10602, 290, 584, 4693, 1201, 44741, 1661, 764, 220, 198, 796, 796, 6707, 40637, 796, 796, 220, 198, 317, 279, 388, 499, 446, 318, 257, 14554, 5044, 7186, 422, 257, 6441, 1022, 257, 2284, 4563, 290, 257, 443, 15478, 764, 7683, 5621, 286, 777, 45456, 547, 33592, 287, 262, 2739, 31982, 82, 290, 1903, 21489, 82, 416, 8124, 367, 11286, 27343, 379, 465, 5044, 3952, 287, 32526, 837, 4486, 764, 4042, 750, 407, 3151, 28003, 764, 1881, 286, 777, 373, 8155, 287, 46244, 416, 11307, 21980, 764, 317, 2092, 14554, 287, 11307, 21980, 8155, 422, 367, 11286, 27343, 373, 257, 3272, 1022, 257, 4257, 443, 15478, 290, 257, 4048, 279, 7487, 764, 32526, 21980, 705, 82, 31674, 373, 262, 9575, 27356, 837, 262, 530, 287, 262, 2042, 2488, 12, 31, 290, 2488, 12, 31, 2330, 4590, 837, 3735, 6083, 416, 257, 279, 7487, 33592, 284, 281, 3942, 443, 15478, 408, 764, 220, 198, 10127, 4642, 284, 257, 4048, 279, 7487, 285, 515, 284, 257, 4257, 443, 15478, 837, 393, 284, 257, 4257, 279, 7487, 285, 515, 284, 257, 4048, 443, 15478, 837, 279, 388, 499, 1371, 16955, 257, 1296, 286, 24603, 1042, 764, 5845, 2098, 6348, 284, 691, 2063, 262, 2546, 286, 262, 3397, 764, 1119, 423, 257, 279, 7487, 2488, 12, 31, 588, 890, 1767, 357, 27111, 284, 262, 21755, 837, 475, 19032, 12238, 621, 2035, 2560, 1267, 837, 475, 1790, 7405, 764, 383, 13209, 318, 2972, 306, 3417, 355, 44039, 837, 256, 3832, 88, 393, 13791, 680, 351, 7586, 837, 7721, 14930, 393, 366, 24887, 366, 686, 2617, 4879, 764, 220, 198, 796, 796, 23702, 3722, 796, 796, 220, 198, 383, 2159, 23702, 4479, 357, 314, 9598, 45, 1267, 3058, 8341, 262, 2284, 4563, 355, 257, 366, 1551, 2328, 366, 4693, 764, 383, 2284, 4563, 318, 17153, 739, 30378, 314, 286, 262, 11680, 319, 4037, 9601, 287, 5268, 19041, 28540, 286, 6183, 376, 32837, 290, 4432, 64, 357, 327, 2043, 1546, 1267, 837, 14837, 5293, 3230, 3292, 287, 27569, 393, 3354, 764, 220, 198, 554, 262, 1578, 1829, 7627, 286, 262, 13797, 5866, 837, 262, 691, 47001, 1900, 2284, 4563, 3265, 318, 262, 4744, 15857, 372, 764, 14303, 2813, 837, 262, 1578, 1829, 13388, 290, 18006, 4809, 357, 1294, 37, 19416, 1267, 8018, 1111, 281, 8345, 2284, 4563, 357, 4752, 284, 307, 257, 850, 35448, 416, 617, 837, 6699, 416, 1854, 1267, 290, 262, 4744, 15857, 372, 837, 1527, 1284, 4800, 739, 262, 5268, 19041, 28540, 2191, 764, 16272, 1687, 40036, 4773, 423, 14707, 1111, 1486, 602, 656, 262, 2258, 1605, 2284, 4563, 837, 351, 8345, 393, 4744, 850, 35448, 407, 8018, 837, 981, 257, 850, 35448, 22566, 3793, 8018, 416, 617, 14903, 5519, 764, 554, 5816, 262, 12395, 954, 329, 262, 4744, 850, 2488, 12, 31, 3265, 373, 10083, 3925, 764, 554, 2805, 2813, 837, 262, 1294, 37, 19416, 6875, 262, 8345, 2284, 4563, 28881, 764, 2080, 262, 1687, 40036, 13479, 546, 663, 6224, 355, 257, 850, 35448, 355, 880, 355, 262, 5885, 286, 7627, 904, 13472, 286, 2284, 25821, 422, 262, 8830, 2837, 837, 262, 2426, 3793, 1280, 764, 220, 198, 770, 13479, 468, 587, 8018, 416, 5398, 4773, 764, 383, 5398, 2717, 4086, 1444, 4606, 319, 262, 12678, 286, 5268, 19041, 18006, 287, 3340, 3965, 663, 1459, 1366, 355, 366, 19022, 366, 284, 3197, 13242, 5115, 262, 10183, 2284, 4563, 705, 82, 9441, 837, 290, 1139, 319, 663, 5313, 2524, 366, 7945, 867, 36242, 287, 262, 1613, 734, 4647, 422, 10183, 3340, 837, 612, 389, 19022, 1366, 284, 13446, 262, 1687, 30565, 393, 8333, 257, 3722, 284, 428, 2284, 4563, 764, 366, 43970, 6409, 2098, 36242, 287, 10553, 837, 14778, 837, 968, 32211, 290, 17711, 32586, 837, 340, 468, 587, 531, 326, 262, 2370, 318, 15861, 5731, 1058, 366, 764, 764, 764, 612, 743, 407, 307, 257, 7310, 705, 10183, 705, 850, 35448, 837, 290, 617, 36242, 743, 307, 286, 13537, 17252, 764, 366, 220, 198, 383, 2284, 4563, 318, 635, 6861, 1973, 881, 286, 262, 1334, 286, 663, 2837, 764, 1081, 286, 8235, 837, 2284, 4563, 10988, 373, 12244, 287, 16519, 837, 7595, 837, 38496, 837, 17456, 837, 21291, 837, 18133, 31656, 837, 4141, 1962, 7484, 837, 32183, 837, 32982, 837, 38252, 837, 23519, 837, 47268, 323, 837, 4198, 259, 480, 837, 16666, 837, 290, 36421, 764, 383, 3797, 550, 645, 2098, 2742, 4800, 287, 25794, 837, 2574, 26482, 837, 290, 13145, 2271, 764, 3310, 4817, 2284, 4563, 10988, 318, 991, 2219, 287, 262, 1578, 1829, 290, 3340, 837, 3584, 484, 389, 6861, 422, 477, 10988, 287, 262, 19760, 261, 2162, 340, 318, 10431, 287, 790, 471, 13, 50, 13, 1181, 422, 262, 24534, 21124, 284, 262, 8211, 10692, 837, 351, 262, 6631, 286, 3442, 764, 3936, 318, 262, 691, 1181, 287, 262, 1578, 1829, 351, 257, 13971, 3265, 286, 2284, 25821, 326, 857, 407, 1805, 326, 3265, 287, 617, 835, 764, 554, 3936, 837, 2284, 25821, 389, 5610, 355, 36212, 15599, 290, 597, 1048, 4769, 257, 10988, 393, 257, 43338, 8749, 460, 1494]}.
06/22/2023 13:41:07 - WARNING - accelerate.accelerator - FSDP Warning: When using FSDP, it is efficient and recommended to call prepare for the model before creating the optimizer
06/22/2023 13:41:09 - WARNING - accelerate.accelerator - FSDP Warning: When using FSDP, several parameter groups will be conflated into a single one due to nested module wrapping and parameter flattening.
06/22/2023 13:41:09 - INFO - __main__ - ***** Running training *****
06/22/2023 13:41:09 - INFO - __main__ -   Num examples = 2318
06/22/2023 13:41:09 - INFO - __main__ -   Num Epochs = 3
06/22/2023 13:41:09 - INFO - __main__ -   Instantaneous batch size per device = 1
06/22/2023 13:41:09 - INFO - __main__ -   Total train batch size (w. parallel, distributed & accumulation) = 16
06/22/2023 13:41:09 - INFO - __main__ -   Gradient Accumulation steps = 8
06/22/2023 13:41:09 - INFO - __main__ -   Total optimization steps = 435
 13%|███████████▋                                                                             | 57/435 [07:58<53:22,  8.47s/it]

However, it took 76058MiB of VRAM

using the main branch of accelerate

pacman100 avatar Jun 22 '23 11:06 pacman100

with 4 GPUs, seeing 62264MB of VRAM usage

pacman100 avatar Jun 22 '23 12:06 pacman100

Sorry for hijacking this but I am getting an OOM error on using 8 A100 40GB GPUs. Since the total GPU memory is more than your setup I am curious why it is not working!

Here is my accelerate env

- `Accelerate` version: 0.20.3
- Platform: Linux-4.19.0-22-cloud-amd64-x86_64-with-glibc2.28
- Python version: 3.9.16
- Numpy version: 1.25.0
- PyTorch version (GPU?): 2.0.1+cu117 (True)
- PyTorch XPU available: False
- System RAM: 669.27 GB
- GPU type: NVIDIA A100-SXM4-40GB
- `Accelerate` default config:
        - compute_environment: LOCAL_MACHINE
        - distributed_type: FSDP
        - mixed_precision: bf16
        - use_cpu: False
        - num_processes: 8
        - machine_rank: 0
        - num_machines: 1
        - rdzv_backend: static
        - same_network: True
        - main_training_function: main
        - fsdp_config: {'fsdp_auto_wrap_policy': 'TRANSFORMER_BASED_WRAP', 'fsdp_backward_prefetch_policy': 'BACKWARD_PRE', 'fsdp_offload_params': False, 'fsdp_sharding_strategy': 1, 'fsdp_state_dict_type': 'SHARDED_STATE_DICT', 'fsdp_transformer_layer_cls_to_wrap': 'GPTJBlock'}
        - downcast_bf16: no
        - tpu_use_cluster: False
        - tpu_use_sudo: False
        - tpu_env: []

This is the command I used

accelerate launch run_clm_no_trainer.py     --dataset_name wikitext     --per_device_train_batch_size 1     --per_device_eval_batch_size 1     --gradient_accumulation_steps 8     --dataset_config_name wikitext-2-raw-v1     --model_name_or_path EleutherAI/gpt-j-6b     --output_dir /tmp/test-clm --low_cpu_mem_usage

Naman-ntc avatar Jun 23 '23 00:06 Naman-ntc

Hello, I believe that large sequence lengths during clm modeling (1024 default I guess) is leading to this behaviour. Could you try applying gradient checkpointing following this: https://github.com/lessw2020/transformer_central/tree/main/activation_checkpointing_tutorial.

This should greatly reduce the Memory usage at the cost of speed.

pacman100 avatar Jun 23 '23 06:06 pacman100

Thank you very much for the quick response!

I used run_clm.py with --gradient_checkpointing True and it seems to work for GPTJ with block_size 1024! However, it does not work for Salesforce/CodeGen-Mono-6B and also doesn't work if I increase the block_size to 2048. I am (for now) able to run my job using deepspeed zero stage 3. Is this expected even with gradient_checkpointing?

Assuming yes, why does FSDP not work here? Is it because cpu-offloading is disabled (which currently hangs to job in FSDP mixed-precision)?

Finally, I wanted to gain some understand about the setting, is there any resource for understanding the performance impact of different configurations here

  • using deepspeed vs fsdp
  • 4 A100-80GB vs 8 A100-40GB

and will the answer depend on block_size and model_size?

Happy to migrate this to the forum!

Naman-ntc avatar Jun 23 '23 06:06 Naman-ntc

Please move this to forum along with all the details like versions of libraries, minimal reproducible example with the command being run along with configs

pacman100 avatar Jun 23 '23 08:06 pacman100

Created a post at https://discuss.huggingface.co/t/fsdp-oom-issue-and-comparision-to-deepspeed/44292/1

Naman-ntc avatar Jun 23 '23 08:06 Naman-ntc