Open-Sora
Open-Sora copied to clipboard
指定T5路径
T5模型是手动下载的,如何指定所在路径?
可以看看这个回答issue209
https://github.com/hpcaitech/Open-Sora/blob/a37a189482a4cd1c7892aa06881e539cbf8078ce/configs/opensora/inference/16x256x256.py#L19-L23 改成
text_encoder = dict(
type="t5",
from_pretrained="path/to/your/model",
model_max_length=120,
local_cache=True,
)
注意,如果你的模型下载路径为/home/xxx/model/t5-v1_1-xxl, 在这里应该传入:from_pretrained="/home/xxx/model"
https://github.com/hpcaitech/Open-Sora/blob/a37a189482a4cd1c7892aa06881e539cbf8078ce/configs/opensora/inference/16x256x256.py#L19-L23
改成
text_encoder = dict( type="t5", from_pretrained="path/to/your/model", model_max_length=120, local_cache=True, )注意,如果你的模型下载路径为, 在这里应该传入:
/home/xxx/model/t5-v1_1-xxl``from_pretrained="/home/xxx/model"
我遇到了同样的问题,但是我下载好以后路径变为
(base) david@ai-gpu:/data/huggingface/t5-v1_1-xxl/snapshots/c9c62f81d37$ ls
config.json pytorch_model-00002-of-00002.bin special_tokens_map.json tokenizer_config.json
pytorch_model-00001-of-00002.bin pytorch_model.bin.index.json spiece.model
模型文件上一级一定是t5-v1_1-xxl这种命名吗?
https://github.com/hpcaitech/Open-Sora/blob/a37a189482a4cd1c7892aa06881e539cbf8078ce/configs/opensora/inference/16x256x256.py#L19-L23
改成
text_encoder = dict( type="t5", from_pretrained="path/to/your/model", model_max_length=120, local_cache=True, )注意,如果你的模型下载路径为, 在这里应该传入:
/home/xxx/model/t5-v1_1-xxlfrom_pretrained="/home/xxx/model" ``我遇到了同样的问题,但是我下载好以后路径变为
(base) david@ai-gpu:/data/huggingface/t5-v1_1-xxl/snapshots/c9c62f81d37$ lsconfig.json pytorch_model-00002-of-00002.bin special_tokens_map.json tokenizer_config.json pytorch_model-00001-of-00002.bin pytorch_model.bin.index.json spiece.model 模型文件上一级一定是t5-v1_1-xxl这种命名吗?
我觉得应该是的, 你可以手动将 /data/huggingface/t5-v1_1-xxl/snapshots/c9c62f81d37 移动到 /data/huggingface/t5-v1_1-xxl 目录下, 并删除 /data/huggingface/t5-v1_1-xxl/snapshots 目录, 或者将 /data/huggingface/t5-v1_1-xxl/snapshots/c9c62f81d37 目录重命名为 t5-v1_1-xxl.
总之, 代码中传入参数 from_pretrained 的目录下应当存在一个 t5-v1_1-xxl 子目录, 它会在 t5-v1_1-xxl 子目录中加载模型参数.
https://github.com/hpcaitech/Open-Sora/blob/a37a189482a4cd1c7892aa06881e539cbf8078ce/configs/opensora/inference/16x256x256.py#L19-L23
改成
text_encoder = dict( type="t5", from_pretrained="path/to/your/model", model_max_length=120, local_cache=True, )注意,如果你的模型下载路径为, 在这里应该传入:
/home/xxx/model/t5-v1_1-xxlfrom_pretrained="/home/xxx/model" ``我遇到了同样的问题,但是我下载好以后路径变为
(base) david@ai-gpu:/data/huggingface/t5-v1_1-xxl/snapshots/c9c62f81d37$ lsconfig.json pytorch_model-00002-of-00002.bin special_tokens_map.json tokenizer_config.json pytorch_model-00001-of-00002.bin pytorch_model.bin.index.json spiece.model 模型文件上一级一定是t5-v1_1-xxl这种命名吗?我觉得应该是的, 你可以手动将
/data/huggingface/t5-v1_1-xxl/snapshots/c9c62f81d37移动到/data/huggingface/t5-v1_1-xxl目录下, 并删除/data/huggingface/t5-v1_1-xxl/snapshots目录, 或者将/data/huggingface/t5-v1_1-xxl/snapshots/c9c62f81d37目录重命名为t5-v1_1-xxl.总之, 代码中传入参数
from_pretrained的目录下应当存在一个t5-v1_1-xxl子目录, 它会在t5-v1_1-xxl子目录中加载模型参数.
这是我的模型文件路径
/home/xxx/Open-Sora/pre_training/t5-v1_1-xxl
例如
/home/xxx/Open-Sora/pre_training/t5-v1_1-xxl/pytorch_model-00001-of-00002.bin
配置文件是改成
text_encoder = dict(
type="t5",
from_pretrained="/home/xxx/Open-Sora/pre_training",
model_max_length=120,
)
依旧提示我
OSError: Error no file named config.json found in directory /home/xxx/Open-Sora/pre_training.
我将路径改为/home/xxx/Open-Sora/pre_training/t5-v1_1-xxl提示我
AssertionError: assert from_pretrained in self.available_models
https://github.com/hpcaitech/Open-Sora/blob/a37a189482a4cd1c7892aa06881e539cbf8078ce/configs/opensora/inference/16x256x256.py#L19-L23
改成
text_encoder = dict( type="t5", from_pretrained="path/to/your/model", model_max_length=120, local_cache=True, )注意,如果你的模型下载路径为, 在这里应该传入:
/home/xxx/model/t5-v1_1-xxlfrom_pretrained="/home/xxx/model" ``我遇到了同样的问题,但是我下载好以后路径变为
(base) david@ai-gpu:/data/huggingface/t5-v1_1-xxl/snapshots/c9c62f81d37$ lsconfig.json pytorch_model-00002-of-00002.bin special_tokens_map.json tokenizer_config.json pytorch_model-00001-of-00002.bin pytorch_model.bin.index.json spiece.model 模型文件上一级一定是t5-v1_1-xxl这种命名吗?我觉得应该是的, 你可以手动将
/data/huggingface/t5-v1_1-xxl/snapshots/c9c62f81d37移动到/data/huggingface/t5-v1_1-xxl目录下, 并删除/data/huggingface/t5-v1_1-xxl/snapshots目录, 或者将/data/huggingface/t5-v1_1-xxl/snapshots/c9c62f81d37目录重命名为t5-v1_1-xxl. 总之, 代码中传入参数from_pretrained的目录下应当存在一个t5-v1_1-xxl子目录, 它会在t5-v1_1-xxl子目录中加载模型参数.这是我的模型文件路径
/home/xxx/Open-Sora/pre_training/t5-v1_1-xxl例如/home/xxx/Open-Sora/pre_training/t5-v1_1-xxl/pytorch_model-00001-of-00002.bin配置文件是改成text_encoder = dict( type="t5", from_pretrained="/home/xxx/Open-Sora/pre_training", model_max_length=120, )依旧提示我
OSError: Error no file named config.json found in directory /home/xxx/Open-Sora/pre_training.我将路径改为/home/xxx/Open-Sora/pre_training/t5-v1_1-xxl提示我AssertionError: assert from_pretrained in self.available_models
我解决了这个问题,我注释了报错信息中的两个assert,并成功跑出了视频,这感觉很棒。谢谢你
This issue is stale because it has been open for 7 days with no activity.
This issue was closed because it has been inactive for 7 days since being marked as stale.