pytorch2keras
pytorch2keras copied to clipboard
ValueError: Layer weight shape (112,) not compatible with provided weight shape (11,)
Hi. When I use codes as follow to convert my pytorch model to keras and set change_ordering=True, net = load_model(model, pthfile) net.eval()
# Make dummy variables (and checking if the model works)
input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
input_var = Variable(torch.FloatTensor(input_np))
output = model(input_var)
# Convert the model!
k_model = \
pytorch_to_keras(model, input_var, (3, 224, 224),
verbose=True, name_policy='short',
change_ordering=True)
I got the ValueError as the title said.
And my model is as: Downsample: self.stage1 = nn.Sequential( conv_bn(3, overall_channel[0], 3, 2), InvertedResidual(overall_channel[0], overall_channel[1], 1, mid_channel[0]) ) self.stage2 = nn.Sequential( InvertedResidual(overall_channel[1], overall_channel[2], 2, mid_channel[1]), InvertedResidual(overall_channel[2], overall_channel[3], 1, mid_channel[2]) ) self.stage3 = nn.Sequential( InvertedResidual(overall_channel[3], overall_channel[4], 2, mid_channel[3]), InvertedResidual(overall_channel[4], overall_channel[5], 1, mid_channel[4]), InvertedResidual(overall_channel[5], overall_channel[6], 1, mid_channel[5]) ) self.stage4 = nn.Sequential( InvertedResidual(overall_channel[6], overall_channel[7], 2, mid_channel[6]), InvertedResidual(overall_channel[7], overall_channel[8], 1, mid_channel[7]), InvertedResidual(overall_channel[8], overall_channel[9], 1, mid_channel[8]), InvertedResidual(overall_channel[9], overall_channel[10], 1, mid_channel[9]), InvertedResidual(overall_channel[10], overall_channel[11], 1, mid_channel[10]), InvertedResidual(overall_channel[11], overall_channel[12], 1, mid_channel[11]), InvertedResidual(overall_channel[12], overall_channel[13], 1, mid_channel[12]) ) self.stage5 = nn.Sequential( InvertedResidual(overall_channel[13], overall_channel[14], 2, mid_channel[13]), InvertedResidual(overall_channel[14], overall_channel[15], 1, mid_channel[14]), InvertedResidual(overall_channel[15], overall_channel[16], 1, mid_channel[15]), InvertedResidual(overall_channel[16], overall_channel[17], 1, mid_channel[16]) )
Upsample:
self.trainsit1 = ResidualBlock(overall_channel[17], overall_channel[13])
self.trainsit2 = ResidualBlock(overall_channel[13], overall_channel[6])
self.trainsit3 = ResidualBlock(overall_channel[6], overall_channel[3])
self.trainsit4 = ResidualBlock(overall_channel[3], overall_channel[1])
self.trainsit5 = ResidualBlock(overall_channel[1], 16)
self.deconv1 = nn.ConvTranspose2d(overall_channel[13], overall_channel[13],
groups=1, kernel_size=4, stride=2, padding=(1,1), bias=False)
self.deconv2 = nn.ConvTranspose2d(overall_channel[6], overall_channel[6],
groups=1, kernel_size=4, stride=2, padding=(1,1), bias=False)
self.deconv3 = nn.ConvTranspose2d(overall_channel[3], overall_channel[3],
groups=1, kernel_size=4, stride=2, padding=(1,1), bias=False)
self.deconv4 = nn.ConvTranspose2d(overall_channel[1], overall_channel[1],
groups=1, kernel_size=4, stride=2, padding=(1,1), bias=False)
self.deconv5 = nn.ConvTranspose2d(16, 16,
groups=1, kernel_size=4, stride=2, padding=(1,1), bias=False)
RS and InvertedRS are as: class InvertedResidual(nn.Module): def init(self, inp, oup, stride, midp, dilation=1): super(InvertedResidual, self).init() self.stride = stride assert stride in [1, 2] self.use_res_connect = self.stride == 1 and inp == oup
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, midp, kernel_size=1, stride=1, padding=(0,0), dilation=1, groups=1, bias=False),
nn.BatchNorm2d(num_features=midp, eps=1e-05, momentum=0.1, affine=True),
nn.ReLU(inplace=True),
# dw
nn.Conv2d(midp, midp,
kernel_size=3, stride=stride, padding=dilation, dilation=dilation,
groups=midp, bias=False),
nn.BatchNorm2d(num_features=midp, eps=1e-05, momentum=0.1, affine=True),
nn.ReLU(inplace=True),
# pw-linear
nn.Conv2d(midp, oup, kernel_size=1, stride=1, padding=(0,0), dilation=1, groups=1, bias=False),
nn.BatchNorm2d(num_features=oup, eps=1e-05, momentum=0.1, affine=True),
)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class ResidualBlock(nn.Module): def init(self, inp, oup, stride=1): super(ResidualBlock, self).init()
self.block = nn.Sequential(
conv_dw(inp, oup, 3, stride=stride),
nn.Conv2d(in_channels=oup, out_channels=oup, kernel_size=3, stride=1, padding=(1,1), groups=oup, bias=False),
nn.BatchNorm2d(num_features=oup, eps=1e-05, momentum=0.1, affine=True),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=oup, out_channels=oup, kernel_size=1, stride=1, padding=(0,0), bias=False),
nn.BatchNorm2d(num_features=oup, eps=1e-05, momentum=0.1, affine=True),
)
if inp == oup:
self.residual = None
else:
self.residual = nn.Sequential(
nn.Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, stride=1, padding=(0,0), bias=False),
nn.BatchNorm2d(num_features=oup, eps=1e-05, momentum=0.1, affine=True),
)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.block(x)
if self.residual is not None:
residual = self.residual(x)
out += residual
out = self.relu(out)
return out
I'm about to converting my pth model to .h5 model and futher to tfjs model. So it would be very helpful if you could teach me to solve this problem.