bark-voice-cloning-HuBERT-quantizer
bark-voice-cloning-HuBERT-quantizer copied to clipboard
issues in notebook due to fairseq version
Maybe implementing a stricter version in requirements is needed?
TypeError Traceback (most recent call last)
Cell In [13], line 2
----> 2 from bark_hubert_quantizer.pre_kmeans_hubert import CustomHubert
3 from bark_hubert_quantizer.customtokenizer import CustomTokenizer
File /notebooks/./bark-voice-cloning-HuBERT-quantizer/bark_hubert_quantizer/pre_kmeans_hubert.py:16
13 from torch import nn
14 from einops import pack, unpack
---> 16 import fairseq
18 from torchaudio.functional import resample
20 from audiolm_pytorch.utils import curtail_to_multiple
File /usr/local/lib/python3.9/dist-packages/fairseq/__init__.py:40
38 import fairseq.optim.lr_scheduler # noqa
39 import fairseq.pdb # noqa
---> 40 import fairseq.scoring # noqa
41 import fairseq.tasks # noqa
42 import fairseq.token_generation_constraints # noqa
File /usr/local/lib/python3.9/dist-packages/fairseq/scoring/__init__.py:34
29 @abstractmethod
30 def result_string(self) -> str:
31 pass
---> 34 _build_scorer, register_scorer, SCORER_REGISTRY, _ = registry.setup_registry(
35 "--scoring", default="bleu"
36 )
39 def build_scorer(choice, tgt_dict):
40 _choice = choice._name if isinstance(choice, DictConfig) else choice
TypeError: cannot unpack non-iterable NoneType object
@YongeBai Do you resolve the issue?
@YongeBai I resolved installing this packages:
pip install scikit-learn pip install scipy