hyperspectral-regression
hyperspectral-regression copied to clipboard
Code examples for the book chapter "Supervised, Semi-Supervised and Unsupervised Learning for Hyperspectral Regression".
.. image:: https://img.shields.io/github/license/felixriese/hyperspectral-regression :target: LICENSE :alt: License: BSD-3-Clause
.. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/felixriese/hyperspectral-regression/master?filepath=notebooks :alt: MyBinder
.. image:: https://travis-ci.com/felixriese/hyperspectral-regression.svg?branch=master :target: https://travis-ci.com/felixriese/hyperspectral-regression :alt: Travis.CI Status
.. image:: https://codecov.io/gh/felixriese/hyperspectral-regression/branch/master/graph/badge.svg :target: https://codecov.io/gh/felixriese/hyperspectral-regression :alt: Codecov
.. image:: https://api.codacy.com/project/badge/Grade/6808eea2d5984c7d8364f7659b40f9ea :target: https://www.codacy.com/manual/felixriese/hyperspectral-regression?utm_source=github.com&utm_medium=referral&utm_content=felixriese/hyperspectral-regression&utm_campaign=Badge_Grade :alt: Codacy Status
Hyperspectral Regression: Code Examples
This repository consists of additional material and exemplary implementations for our book chapter.
The code in this repository is provided via notebooks. The notebooks are structured as follows:
Data <notebooks/1_Data.ipynb>_Features <notebooks/2_Features.ipynb>_Supervised Learning <notebooks/3_Supervised_Learning.ipynb>_Active Learning <notebooks/4_Active_Learning.ipynb>_Model Selection and Evaluation <notebooks/5_Model_Selection_and_Evaluation.ipynb>_Generative Adversarial Networks <notebooks/6_GANs.ipynb>_
Description
:License:
3-Clause BSD license <LICENSE>_
:Authors:
Felix M. Riese <mailto:[email protected]>, Sina Keller <mailto:[email protected]>
:Citation:
see Citation_
:Paper:
Riese and Keller (2020) <https://doi.org/10.1007/978-3-030-38617-7_7>_
:Requirements:
Python 3 with these packages <requirements.txt>_
How to use this repository?
-
Install Python 3, e.g. with
Anaconda <https://www.anaconda.com/distribution/>_ -
Install the required packages
conda install --file requirements.txt
-
Start jupyter
jupyter notebook
-
Open the notebook folder in this repository in the Jupyter browser and select the desired notebook.
Citation
The bibtex file including both references is available in bibliography.bib <bibliography.bib>_.
Paper:
Felix M. Riese and Sina Keller, "Supervised, Semi-Supervised, and Unsupervised
Learning for Hyperspectral Regression", in Hyperspectral Image Analysis:
Advances in Machine Learning and Signal Processing, Saurabh Prasad and Jocelyn
Chanussot, Eds. Cham: Springer International Publishing, 2020, ch. 7,
pp. 187–232, doi:10.1007/978-3-030-38617-7_7 <https://doi.org/10.1007/978-3-030-38617-7_7>_.
.. code:: bibtex
@incollection{riese2020supervised,
author = {Riese, Felix~M. and Keller, Sina},
title ={{Supervised, Semi-Supervised, and Unsupervised Learning for
Hyperspectral Regression}},
booktitle = {{Hyperspectral Image Analysis: Advances in Machine
Learning and Signal Processing}},
editor = {Prasad, Saurabh and Chanussot, Jocelyn},
year = {2020},
publisher = {Springer International Publishing},
address = {Cham},
chapter = {7},
pages = {187--232},
doi = {10.1007/978-3-030-38617-7_7},
}
Code:
Felix M. Riese and Sina Keller, "Hyperspectral Regression: Code Examples",
Zenodo, doi:10.5281/zenodo.3450676 <http://doi.org/10.5281/zenodo.3450676>_,
2019.
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3450676.svg :target: https://doi.org/10.5281/zenodo.3450676 :alt: DOI
.. code:: bibtex
@misc{riese2019hyperspectral,
author = {Riese, Felix~M. and Keller, Sina},
title = {{Hyperspectral Regression: Code Examples}},
year = {2019},
DOI = {10.5281/zenodo.3450676},
publisher = {Zenodo},
howpublished = {\href{https://doi.org/10.5281/zenodo.3450676}{doi.org/10.5281/zenodo.3450676}}
}