Shared memory error
Hello, I am trying to run your code, but I am getting errors about share memory which don't make sense.
Output below along with some info about the machine (~50 GB RAM + V100 with an 8 core Xeon )
python3 train.py --train_path omniglot/python/images_background \
--test_path omniglot/python/images_evaluation \ --gpu_ids 0 \ --model_path models
use gpu: 0 to train. begin loading training dataset to memory finish loading training dataset to memory begin loading test dataset to memory finish loading test dataset to memory /usr/local/lib/python3.7/dist-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='mean' instead. warnings.warn(warning.format(ret)) /usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.) return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode) ERROR: Unexpected bus error encountered in worker. This might be caused by insufficient shared memory (shm). ERROR: Unexpected bus error encountered in worker. This might be caused by insufficient shared memory (shm). Traceback (most recent call last): File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py", line 990, in _try_get_data data = self._data_queue.get(timeout=timeout) File "/usr/lib/python3.7/multiprocessing/queues.py", line 113, in get return _ForkingPickler.loads(res) File "/usr/local/lib/python3.7/dist-packages/torch/multiprocessing/reductions.py", line 289, in rebuild_storage_fd fd = df.detach() File "/usr/lib/python3.7/multiprocessing/resource_sharer.py", line 57, in detach with _resource_sharer.get_connection(self._id) as conn: File "/usr/lib/python3.7/multiprocessing/resource_sharer.py", line 87, in get_connection c = Client(address, authkey=process.current_process().authkey) File "/usr/lib/python3.7/multiprocessing/connection.py", line 498, in Client answer_challenge(c, authkey) File "/usr/lib/python3.7/multiprocessing/connection.py", line 741, in answer_challenge message = connection.recv_bytes(256) # reject large message File "/usr/lib/python3.7/multiprocessing/connection.py", line 216, in recv_bytes buf = self._recv_bytes(maxlength) File "/usr/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytes buf = self._recv(4) File "/usr/lib/python3.7/multiprocessing/connection.py", line 379, in _recv chunk = read(handle, remaining) ConnectionResetError: [Errno 104] Connection reset by peer
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "train.py", line 79, in
itamblyn@host free -m total used free shared buff/cache available Mem: 52329 716 41895 8 9717 51060 Swap: 0 0 0
itamblyn@host ipcs -lm
------ Shared Memory Limits -------- max number of segments = 4096 max seg size (kbytes) = 18014398509465599 max total shared memory (kbytes) = 18014398509481980 min seg size (bytes) = 1
nvidia-smi
Fri Aug 20 01:01:45 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.73.01 Driver Version: 460.73.01 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla V100-SXM2... Off | 00000000:00:04.0 Off | 0 |
| N/A 37C P0 38W / 300W | 0MiB / 16160MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found |
did you tried to play with the batch_size ???