segment-anything
segment-anything copied to clipboard
c++ onnxruntime linux gpu 1.14.1 can't infer
when infer decoder onnx model, some times got error in session.Run, some times got 0x0 size mask output. but python version onnxruntime-gpu 1.14.1 is work fine. error as following:
2023-04-26 10:54:56.695981402 [E:onnxruntime:, sequential_executor.cc:494 ExecuteKernel] Non-zero status code returned while running Resize node. Name:'/Resize_1' Status Message: upsamplebase.h:334 ScalesValidation Scale value should be greater than 0.
Non-zero status code returned while running Resize node. Name:'/Resize_1' Status Message: upsamplebase.h:334 ScalesValidation Scale value should be greater than 0.
or 0x0 size mask:
masks out shape: 1 4 0 0
iou_predictions out shape: 1 4
low_res_masks out shape: 1 4 256 256
onnx models:
wget https://huggingface.co/visheratin/segment-anything-vit-b/resolve/main/encoder-quant.onnx
wget https://huggingface.co/visheratin/segment-anything-vit-b/resolve/main/decoder-quant.onnx
infer code:
std::vector<std::shared_ptr<std::vector<float>>>
Model::execute(std::vector<std::vector<float>> input_datas) {
auto g_values = ((GlobalValues *) globel_values_);
std::vector<Ort::Value> input_tensors;
std::vector<const char *> input_names_cstr;
for (int i = 0; i < g_values->input_names.size(); i++) {
input_names_cstr.emplace_back(g_values->input_names[i].c_str());
// size_t input_tensor_size = utils::vectorProduct(g_values->input_tensor_shape[i]);
std::vector<float> input_tensor_values(input_datas[i].data(), input_datas[i].data() + input_datas[i].size());
auto new_shape = g_values->input_tensor_shape[i];
int negind=-1;
size_t mulsize=1;
for (int j=0;j<g_values->input_tensor_shape[i].size();j++){
if(g_values->input_tensor_shape[i][j]==-1){
negind=j;
}else{
mulsize*=g_values->input_tensor_shape[i][j];
}
}
if(negind>0){
new_shape[negind]=input_datas[i].size()/mulsize;
}
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(
OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);
input_tensors.emplace_back(Ort::Value::CreateTensor<float>(
memory_info, input_tensor_values.data(), input_datas[i].size(),
new_shape.data(), g_values->input_tensor_shape[i].size()
));
}
std::vector<const char *> output_names_cstr;
for (int i = 0; i < g_values->output_names.size(); i++) {
output_names_cstr.emplace_back(g_values->output_names[i].c_str());
}
// uint64_t startPostTime2 = Perception::utils::getMonotonicTimeMs();
std::vector<Ort::Value> output_tensors = g_values->session.Run(Ort::RunOptions{nullptr},
input_names_cstr.data(),
input_tensors.data(),
input_tensors.size(),
output_names_cstr.data(),
output_names_cstr.size());
// std::cerr << "infer inside Process elapsed: " << Perception::utils::getMonotonicTimeMs() - startPostTime2
// << "(ms)" << std::endl;
std::vector<std::shared_ptr<std::vector<float>>> out_tensors;
g_values->output_tensor_shape.clear();
for (int i = 0; i < g_values->output_names.size(); i++) {
std::vector<int64_t> output_shape = output_tensors[i].GetTensorTypeAndShapeInfo().GetShape();
size_t count = output_tensors[i].GetTensorTypeAndShapeInfo().GetElementCount();
auto *rawOutput = output_tensors[i].GetTensorData<float>();
std::shared_ptr<std::vector<float>> output = std::make_shared<std::vector<float>>(rawOutput,
rawOutput + count);
out_tensors.emplace_back(output);
g_values->output_tensor_shape.emplace_back(output_shape);
std::cout << "out shape: ";
for (auto shape: output_shape)
std::cout << shape << "\t";
std::cout << std::endl;
}
return out_tensors;
}
some values inside of your tensors maybe lower than zero
I'm also getting strange mask shape in my case is 1x1x1x1
@neophack Did you manage to run the decoder in C++?
when infer decoder onnx model, some times got error in session.Run, some times got 0x0 size mask output. but python version onnxruntime-gpu 1.14.1 is work fine. error as following:
2023-04-26 10:54:56.695981402 [E:onnxruntime:, sequential_executor.cc:494 ExecuteKernel] Non-zero status code returned while running Resize node. Name:'/Resize_1' Status Message: upsamplebase.h:334 ScalesValidation Scale value should be greater than 0. Non-zero status code returned while running Resize node. Name:'/Resize_1' Status Message: upsamplebase.h:334 ScalesValidation Scale value should be greater than 0.or 0x0 size mask:
masks out shape: 1 4 0 0 iou_predictions out shape: 1 4 low_res_masks out shape: 1 4 256 256onnx models:
wget https://huggingface.co/visheratin/segment-anything-vit-b/resolve/main/encoder-quant.onnx wget https://huggingface.co/visheratin/segment-anything-vit-b/resolve/main/decoder-quant.onnxinfer code:
std::vector<std::shared_ptr<std::vector<float>>> Model::execute(std::vector<std::vector<float>> input_datas) { auto g_values = ((GlobalValues *) globel_values_); std::vector<Ort::Value> input_tensors; std::vector<const char *> input_names_cstr; for (int i = 0; i < g_values->input_names.size(); i++) { input_names_cstr.emplace_back(g_values->input_names[i].c_str()); // size_t input_tensor_size = utils::vectorProduct(g_values->input_tensor_shape[i]); std::vector<float> input_tensor_values(input_datas[i].data(), input_datas[i].data() + input_datas[i].size()); auto new_shape = g_values->input_tensor_shape[i]; int negind=-1; size_t mulsize=1; for (int j=0;j<g_values->input_tensor_shape[i].size();j++){ if(g_values->input_tensor_shape[i][j]==-1){ negind=j; }else{ mulsize*=g_values->input_tensor_shape[i][j]; } } if(negind>0){ new_shape[negind]=input_datas[i].size()/mulsize; } Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu( OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault); input_tensors.emplace_back(Ort::Value::CreateTensor<float>( memory_info, input_tensor_values.data(), input_datas[i].size(), new_shape.data(), g_values->input_tensor_shape[i].size() )); } std::vector<const char *> output_names_cstr; for (int i = 0; i < g_values->output_names.size(); i++) { output_names_cstr.emplace_back(g_values->output_names[i].c_str()); } // uint64_t startPostTime2 = Perception::utils::getMonotonicTimeMs(); std::vector<Ort::Value> output_tensors = g_values->session.Run(Ort::RunOptions{nullptr}, input_names_cstr.data(), input_tensors.data(), input_tensors.size(), output_names_cstr.data(), output_names_cstr.size()); // std::cerr << "infer inside Process elapsed: " << Perception::utils::getMonotonicTimeMs() - startPostTime2 // << "(ms)" << std::endl; std::vector<std::shared_ptr<std::vector<float>>> out_tensors; g_values->output_tensor_shape.clear(); for (int i = 0; i < g_values->output_names.size(); i++) { std::vector<int64_t> output_shape = output_tensors[i].GetTensorTypeAndShapeInfo().GetShape(); size_t count = output_tensors[i].GetTensorTypeAndShapeInfo().GetElementCount(); auto *rawOutput = output_tensors[i].GetTensorData<float>(); std::shared_ptr<std::vector<float>> output = std::make_shared<std::vector<float>>(rawOutput, rawOutput + count); out_tensors.emplace_back(output); g_values->output_tensor_shape.emplace_back(output_shape); std::cout << "out shape: "; for (auto shape: output_shape) std::cout << shape << "\t"; std::cout << std::endl; } return out_tensors; }
I meet the same problem , when i run the decoder in C++ ,my masks output shape is [1,4,0,0] , have you solve it? and when i get the iou_predictions shape[0] it will error , bu i can get the shape[1]😥