DeepSeek-Coder-V2
DeepSeek-Coder-V2 copied to clipboard
Model always responds in Chinese when using standard way of vllm + huggingface model
Code used: from transformers import AutoTokenizer from vllm import LLM, SamplingParams
max_model_len, tp_size = 8192, 1 model_name = "deepseek-ai/DeepSeek-Coder-V2-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True) sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [ [{"role": "user", "content": "Who are you?"}], [{"role": "user", "content": "write a quick sort algorithm in python."}], [{"role": "user", "content": "Write a piece of quicksort code in C++."}], ]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs] print(generated_text)
vllm version: 0.5.5 or 0.6.1.post2 all have the Chinese output.