MINTIME-Multi-Identity-size-iNvariant-TIMEsformer-for-Video-Deepfake-Detection
MINTIME-Multi-Identity-size-iNvariant-TIMEsformer-for-Video-Deepfake-Detection copied to clipboard
Inhomogenous Shape
I tested the model on my custom test set using line python3 predict.py --video_path fakes/qwkhktdtjj.mp4 --model_weights ./pretrained_model_weights/MINTIME_XC_Model_checkpoint30 --extractor_weights ./pretrained_model_weights/MINTIME_XC_Extractor_checkpoint30 --config config/size_invariant_timesformer.yaml --extractor_model 1
But it gives me this error
/usr/local/lib/python3.10/dist-packages/torchvision/transforms/_functional_video.py:6: UserWarning: The 'torchvision.transforms._functional_video' module is deprecated since 0.12 and will be removed in the future. Please use the 'torchvision.transforms.functional' module instead.
warnings.warn(
/usr/local/lib/python3.10/dist-packages/torchvision/transforms/_transforms_video.py:22: UserWarning: The 'torchvision.transforms._transforms_video' module is deprecated since 0.12 and will be removed in the future. Please use the 'torchvision.transforms' module instead.
warnings.warn(
/usr/local/lib/python3.10/dist-packages/torchvision/transforms/functional_tensor.py:5: UserWarning: The torchvision.transforms.functional_tensor module is deprecated in 0.15 and will be removed in 0.17. Please don't rely on it. You probably just need to use APIs in torchvision.transforms.functional or in torchvision.transforms.v2.functional.
warnings.warn(
Namespace(video_path='fakes/qwkhktdtjj.mp4', detector_type='FacenetDetector', random_state=42, gpu_id=0, workers=1, config='config/size_invariant_timesformer.yaml', model_weights='./pretrained_model_weights/MINTIME_XC_Model_checkpoint30', extractor_model=1, extractor_weights='./pretrained_model_weights/MINTIME_XC_Extractor_checkpoint30', output_type=0, save_attentions=False)
Detecting faces...
Traceback (most recent call last):
File "/content/drive/MyDrive/Video-deepfake/MINTIME-Multi-Identity-size-iNvariant-TIMEsformer-for-Video-Deepfake-Detection/predict.py", line 536, in