Credit-Card-Fraud-Detection-using-Autoencoders-in-Keras icon indicating copy to clipboard operation
Credit-Card-Fraud-Detection-using-Autoencoders-in-Keras copied to clipboard

iPython notebook and pre-trained model that shows how to build deep Autoencoder in Keras for Anomaly Detection in credit card transactions data

Results 5 Credit-Card-Fraud-Detection-using-Autoencoders-in-Keras issues
Sort by recently updated
recently updated
newest added
trafficstars

Hi, I got your data now, but i have a question, could you please share the raw-data or show the way how you process the data? Thank you very much....

```python input_layer = Input(shape=(input_dim, )) encoder = Dense(encoding_dim, activation="tanh", activity_regularizer=regularizers.l1(10e-5))(input_layer) encoder = Dense(int(encoding_dim / 2), activation="relu")(encoder) decoder = Dense(int(encoding_dim / 2), activation='tanh')(encoder) decoder = Dense(input_dim, activation='relu')(decoder) autoencoder = Model(inputs=input_layer, outputs=decoder)...