quickstart-streaming-agents icon indicating copy to clipboard operation
quickstart-streaming-agents copied to clipboard

Build, deploy, and orchestrate event-driven agents natively on Apache Flink® and Apache Kafka®

Streaming Agents on Confluent Cloud Quickstart

Sign up for Confluent Cloud

Build real-time AI agents with Confluent Cloud Streaming Agents. This quickstart includes three hands-on labs:

Lab Description
Lab1 - Price Matching Orders With MCP Tool Calling *NEW!* Now using new Agent Definition (CREATE AGENT) syntax. Price matching agent that scrapes competitor websites and adjusts prices in real-time

Lab1 architecture diagram
Lab2 - Vector Search & RAG Vector search pipeline template with retrieval augmented generation (RAG). Use the included Flink documentation chunks, or bring your own documents for intelligent document retrieval.

Lab2 architecture diagram
Lab3 - Agentic Fleet Management Using Confluent Intelligence End-to-end boat fleet management demo showing use of Agent Definition, MCP tool calling, vector search, and anomaly detection.

Lab3 architecture diagram

Prerequisites

Required accounts & credentials:

  • Sign up for Confluent Cloud
  • Lab1: Zapier remote MCP server (Setup guide)
  • Lab2: MongoDB Atlas vector database (Setup guide)
  • Lab3: Zapier (Setup guide) + MongoDB (Setup guide)

Required tools:

Installation commands (Mac/Windows/Linux) **Mac:**
brew install uv git python && brew tap hashicorp/tap && brew install hashicorp/tap/terraform && brew install --cask confluent-cli docker-desktop && brew install awscli  # or azure-cli

Windows:

winget install astral-sh.uv Git.Git Docker.DockerDesktop Hashicorp.Terraform ConfluentInc.Confluent-CLI Python.Python Amazon.AWSCLI # or Microsoft.AzureCLI

Linux:

curl -LsSf https://astral.sh/uv/install.sh | sh
# Install other tools via your package manager

🚀 Quick Start

Clone the repository and navigate to the Quickstart directory:

git clone https://github.com/confluentinc/quickstart-streaming-agents.git
cd quickstart-streaming-agents

One command deployment:

uv run deploy

That's it! The script will guide you through setup, automatically create API keys, and deploy your chosen lab(s).

[!NOTE]

For instructor-led workshops, add the --workshop flag: uv run deploy --workshop.

Directory Structure

quickstart-streaming-agents/
├── aws|azure/                          # Choose a cloud
│   ├── core/                           # Shared Confluent Cloud infra for all labs
│   ├── lab1-tool-calling/              # Lab-specific infra
│   ├── lab2-vector-search/             # Lab-specific infra
│   └── lab3-agentic-fleet-management/  # Lab-specific infra
├── deploy.py                           # 🚀 Start here
└── scripts/                            # Python utilities
🔄 Alternative deployment methods

Traditional Python:

pip install -e . && python deploy.py
🔧 Manual terraform deployment

Prerequisites

  • All tools installed and authenticated
  • Confluent Cloud API keys (Cloud Resource Management keys with EnvironmentAdmin role)

Deploy

cd aws/  # or azure/
cd core/
terraform init && terraform apply --auto-approve
cd ../lab1-tool-calling/  # or lab2-vector-search
terraform init && terraform apply --auto-approve

Required terraform.tfvars

cloud_provider = "aws"  # or "azure"
cloud_region = "your-region"  # must be a region supported by MongoDB free tier, otherwise Lab2 deployment will not succeed
confluent_cloud_api_key = "your-key"
confluent_cloud_api_secret = "your-secret"
zapier_sse_endpoint = "https://mcp.zapier.com/api/mcp/s/your-key/sse"  # Lab1 & Lab3
mongodb_connection_string = "mongodb+srv://cluster0.abc.mongodb.net"  # Lab2 & Lab3
mongodb_username = "your-db-user"  # Lab2 & Lab3
mongodb_password = "your-db-pass"  # Lab2 & Lab3

Tear down

cd aws/lab1-tool-calling && terraform destroy --auto-approve
cd ../core && terraform destroy --auto-approve

Cleanup

# Automated
uv run destroy

Sign up for early access to Flink AI features

For early access to exciting new Flink AI features, fill out this form and we'll add you to our early access previews.