simple-faster-rcnn-pytorch
simple-faster-rcnn-pytorch copied to clipboard
cuda version problem
the python code for non_maximum_suppression is about 2x slow
It is strongly recommended to build cython code:
`cd model/utils/nms/; python3 build.py build_ext --inplace
`cd model/utils/nms/; python3 build.py build_ext --inplace''')
======user config========
{'caffe_pretrain': True,
'caffe_pretrain_path': 'checkpoints/vgg16_caffe.pth',
'data': 'voc',
'debug_file': '/tmp/debugf',
'env': 'fasterrcnn-caffe',
'epoch': 14,
'load_path': None,
'lr': 0.001,
'lr_decay': 0.1,
'max_size': 1000,
'min_size': 600,
'num_workers': 8,
'plot_every': 100,
'port': 8097,
'pretrained_model': 'vgg16',
'roi_sigma': 1.0,
'rpn_sigma': 3.0,
'test_num': 10000,
'test_num_workers': 8,
'use_adam': False,
'use_chainer': False,
'use_drop': False,
'voc_data_dir': '/home/lbl/work/code/simple-faster-rcnn-pytorch-master/VOCdevkit/VOC2007',
'weight_decay': 0.0005}
==========end============
load data
Traceback (most recent call last):
File "train.py", line 132, in
If you suspect this is an IPython bug, please report it at: https://github.com/ipython/ipython/issues or send an email to the mailing list at [email protected]
You can print a more detailed traceback right now with "%tb", or use "%debug" to interactively debug it.
Extra-detailed tracebacks for bug-reporting purposes can be enabled via: %config Application.verbose_crash=True
解决了吗,我也遇到这个问题
I changed the pytorch version to V1.0&CUDA9.0 from V1.5&CUDA10.0, then solve this problem.
However, there is another problem.
when training the Faster RCNN (Pytorch V1.0&CUDA 9.0), ERROR comes as shown ' AttributeError: module 'cupy' has no attribute 'util' ', so I modified the source code. ( i.e. @cupy.util.memoize(for_each_device=True) ------>> cupy.memoize (for_each_device=True) .OR. @cupy.memoize(for_each_device=True).
It still does not work, showing ' TypeError: Implicit conversion to a NumPy array is not allowed. Please use .get() to construct a NumPy array explicitly. '
How to solve this problem ??
I changed the pytorch version to V1.0&CUDA9.0 from V1.5&CUDA10.0, then solve this problem. However, there is another problem. when training the Faster RCNN (Pytorch V1.0&CUDA 9.0), ERROR comes as shown ' AttributeError: module 'cupy' has no attribute 'util' ', so I modified the source code. ( i.e. @cupy.util.memoize(for_each_device=True) ------>> cupy.memoize (for_each_device=True) .OR. @cupy.memoize(for_each_device=True). It still does not work, showing ' TypeError: Implicit conversion to a NumPy array is not allowed. Please use
.get()to construct a NumPy array explicitly. ' How to solve this problem ??
我也遇到同样的问题,兄弟你解决了吗?